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Abstract

The Open Agent Architecture (OAA), developed and used for several years at SRI
International, makes it possible for software services to be provided through the co-
operative efforts of distributed collections of autonomous agents. Communication and
cooperation between agents are brokered by one or more facilitators, which are respon-
sible for matching requests, from users and agents, with descriptions of the capabilities
of other agents. Thus it is not generally required that a user or agent know the iden-
tities, locations, or number of other agents involved in satisfying a request. OAA is
structured so as to minimize the effort involved in creating new agents and “wrapping”
legacy applications, written in various languages and operating on various platforms;
to encourage the reuse of existing agents; and to allow for dynamism and flexibility in
the makeup of agent communities. Distinguishing features of OAA as compared with
related work include extreme flexibility in using facilitator-based delegation of complex
goals, triggers, and data management requests; agent-based provision of multimodal
user interfaces; and built-in support for including the user as a privileged member of
the agent community.

This paper explains how agent-based systems are constructed with OAA. To provide
technical context, we describe the motivations for its design, and situate its features
within the realm of alternative software paradigms. A summary is given of OAA-based
systems built to date. The characteristics and use of each major component of OAA
infrastructure are described, including the agent library, the Interagent Communication
Language, capabilities declarations, service requests, facilitation, management of data
repositories, and autonomous monitoring using triggers.



1 Introduction

With a reported 1800 new computers being added to the Internet every day, a paradigm
shift for computing is well under way, one which moves away from requiring all relevant data
and programs to reside on the user’s desktop machine. The data now routinely accessed
from computers spread around the world has become increasingly rich in format, comprising
multimedia documents, audio and video streams, and with the popularization of Java, may
include programs which can be downloaded and executed on the local machine. As the world
continues to evolve towards a more networked computing model where remote computers take
on an expanded role not only for storing public data but also for providing processing services,
we will need new programming models which allow for flexible composition of distributed
processing elements in a dynamically changing and relatively unstable environment.

In Section 2 of this paper, we first review various approaches to distributed computing, and
then situate our own approach, the Open Agent Architecture (OAA)!, within the scope of this
related work. Subsequent sections will provide detailed descriptions of the inner workings
of OAA. Whereas the motivating concepts for an early version of OAA were presented in [4],
and certain OAA-based systems have been described in [2], [12], [13], [15], and [17], this is
the first paper to present a detailed technical explanation of how systems are constructed
using OAA.

2 Technologies for Distributed Computing

In this section, we will briefly review the overall concepts, advantages and disadvantages of
several approaches to distributed computing, including distributed objects, mobile objects,
agent-based software engineering, and blackboard-style architectures.

2.1 The Distributed Object Approach

Object-oriented languages, such as C++ or Java, provide several significant advances over
standard procedural languages with respect to the reusability and modularity of code:

e encapsulation: encapsulation encourages the creation of library interfaces which mini-
mize dependencies on underlying algorithms or data structures. Changes to program-
ming internals can be made at a later date with requiring changes to the interfaces
and of the code code which uses the library.

e inheritance: permits the extension and modification of a library of routines and data
without requiring source code to the original library.

e polymorphism: allows one body of code to work on an arbitrary number of data types.

Open Agent Architecture and OAA are trademarks of SRI International. Other brand names and product
names herein are trademarks and registered trademarks of their respective holders.



Whereas “standard” object-oriented programming (OOP) languages can be used to build
monolithic programs out of many object building blocks, distributed object technologies
(DOOP) such as OMG’s CORBA [19] or Microsoft’s DCOM [14] allow the creation of pro-
grams whose components may be spread across multiple machines. To implement a client-
server relationships between objects, distributed object systems use a registry mechanism
(CORBA'’s registry is called an Object Request Broker, or ORB) to store the interface de-
scriptions of available objects. Through the ORB’s services, a client can transparently invoke
a method on a remote server object; the ORB is responsible for finding an object that can
implement the request, passing it the parameters, invoking its method, and returning the
results. The client does not have to be aware of where the object is located, its programming
language, its operating system, or any other system aspects that are not part of an object’s
interface.

Although distributed objects offer a powerful paradigm for creating networked applications,
certain aspects of the approach are not perfectly tailored to the constantly changing envi-
ronment of the Internet. A major restriction of the DOOP approach is that the interactions
among objects are fixed through explicitly coded instructions by the application developer.
This implies that it is very difficult to reuse an object in a new application without bringing
along all its inherent dependencies on other objects (embedded interface definitions and ex-
plicit method calls). Another restriction of the DOOP approach is the result of its reliance
on a remote procedure call (RPC) style of communication. Although easy to debug, this
single thread of execution model does not facilitate programming to exploit the potential for
parallel computation that one would expect in distributed environment. In addition, RPC
uses a blocking (synchronous) scheme which does not scale well for high-volume transactions.

2.2 Mobile Objects

Mobile objects, sometimes called mobile agents, are bits of code which can move to another
execution site (presumably on a different machine) under their own programmatic control,
where they can then efficiently interact with the local environment. Commercial instantia-
tions of this technology include Odyssey by General Magic, Concordia by Mitsubishi, and
Voyager by ObjectSpace.

For certain types of problems, the mobile object paradigm offers advantages over more
traditional distributed object approaches. These include:

e Network bandwidth: for certain types of database queries or electronic commerce ap-
plications, it is more efficient to perform tests on data by bringing the tests to the data
than by bringing large amounts of data to the testing program.

e Parallelism: mobile agents can be spawned in parallel to accomplish many tasks at
once.

Disadvantages (or inconveniences) of the mobile agent approach are that:



e In a similar fashion to DOOP programming, an agent developer must programmatically
specify where to go and how to interact with the target environment.

e There is generally little coordination support to encourage interactions among multiple
(mobile) participants.

e Agents must be written in the programming language supported by the execution en-
vironment, whereas many other distributed technologies support heterogeneous com-
munities of components, written in diverse programming languages.

2.3 Blackboard Architectures

Blackboard approaches, such as Schwartz’s FLiPSiDE [20] or Gelernter’s LINDA [6], allow
multiple processes to communicate by reading and writing tuples from a global data store.
Each process can watch for items of interest, perform computations based on the state of
the blackboard, and then add partial results or queries that other processes can consider.

Blackboard architectures provide a powerful framework for problem solving by a dynamic
community of distributed processes. A blackboard approach provides one solution to elimi-
nating the tightly bound interaction links that some of the other distributed technologies re-
quire during inter-process communication. This advantage is also a disadvantage sometimes:
although a programmer does not need to refer to a specific process during computation, the
framework does not providing support for doing so in cases where this would be practical.

2.4 Agent-based Software Engineering

Several research communities have approached distributed computing by casting it as a
problem of modeling communication among autonomous entities. Efficient communication
among participants requires four components: 1) a transport mechanism which will carry
messages in an asynchronous fashion; 2) an interaction protocol which defines various types
of communication interchanges and their social implications (for instance, a response is
expected of a question); 3) a communication language which permits the expression and
interpretation of utterances; and 4) an agreed upon set of shared vocabulary and meaning
for concepts (often called an ontology). Such mechanisms permit a much richer style of
interaction among participants than can be expressed using distributed object’s RPC model
or a blackboard architecture’s centralized exchange approach.

Undoubtably the most widely-used framework for agent-based software engineering is that of
the Knowledge Query and Manipulation Language (KQML) [11, 22]. KQML, which imple-
ments a transport and interaction protocol, is often used in conjunction with the Knowledge
Interchange Format (KIF) communication language, and either ad hoc or more formalized
ontologies.



2.5 Open Agent Architecture

The motivations for the our approach to distributed computing share much in common with
the paradigms we have outlined above. Like distributed object frameworks, the primary goal
of the OAA is to provide a means for integrating heterogeneous, commercial applications
in a distributed infrastructure. However, we would like to add the dynamic nature and
extensibility of the blackboard approaches, the efficiency of mobile objects, and the rich and
complex interactions of communicating agents.

Perhaps the best way to obtain an intuitive sense of the characteristics and strengths of
a programming methodology is to look at how it has been applied to one or more real
applications. Table 1 provides several OAA-based applications from which we will take
examples to illustrate qualities important to the framework.

User Delegation. Users want to be able to delegate a task to the agent community without
having to specify how and who will perform each subpiece of every command. As an example
from the Automated Office application, the request “When mail arrives for me from David,
get it to me immediately” produces coordinated activity among 15 independent agents to
achieve the goal. What the user can say and do is a function of the agents who are connected
to the network at that moment.

Parallel competition and cooperation. In an example from the Multimodal Map ap-
plication, in which a user issues commands on a map by drawing, writing and speaking,
the spoken phrase “Show a photo of the hotel.” will create competitive interactions among
several agents. Is the hotel the one the user has been talking about (natural language agent),
the one he is looking at (map interface), or the one he will point at in a few seconds (gesture
recognition)? Given “Show a photo of the hotel on Smith Street”, the database agent must
cooperate with the other competing agents to help resolve this reference.

Reuse. Although the Multimodal Map application was designed for a travel planning task,
it was reused without code changes to monitor and control multiple robots [10], to display
map positions for objects being tracked in a live video [3], and to perform Wizard-of-Oz user
study simulations [1].

Adaptive. When the monitor broke during a demonstration of the Automated Office sys-
tem, the agent community found an unanticipated way to present answers to user queries —
using text-to-speech over the telephone.

Given this introduction to some of the motivations and capabilities of the OAA, the rest of
this paper will concern itself with providing a detailed description of how the OAA works
and how to build distributed applications using it.

3 Overview of OAA System Structure

Figure 1 presents the structure typical of a small OAA system, showing a user interface agent
and several application agents and meta-agents, organized as a community of peers by their



‘ Application

‘ Description

Automated Office

Mobile interfaces (PDA with telephone) to integrated
community of commercial office applications (calendar,
database, email) and Al technologies (speech recognition,
speaker identification, text-to-speech, natural language
interpretation and generation, etc.).

InfoWiz An animated voice interactive interface to the web. [4]
ATIS-Web Try out a live demo of speech recognition over the web!
CommandTalk Spoken-language interface for controlling simulated

forces. [15]

Spoken Dialog Summarization

A real-time system for summarizing human-human spon-
taneous spoken dialogues (Japanese).

Language Tutoring

Speech recognition for foreign language learning, incor-
porating user modeling for adaptive lessons.

Multimodal Map

Pen/Voice interface to distributed web data.

Disaster response

A collaborative, wireless map-based interface for emer-
gency response teams.

MVIEWS

Integrating speech, pen, NL, image processing and other
technologies for the video analyst. [3]

OAA InfoBroker

Mediated facilitation of heterogeneous structured and
semi-structured (Web) datasources. [13]

OAA Rental Agent

Monitors the web and notifies you when housing classi-
fieds meet your specifications.

Agent Development Tools

Guides the agent developer through the steps required to
create new agents. [12]

Multi-Robot Control

A team of robots works together on assigned tasks (1st
place, AAAI Office Navigation Event). [10]

Surgical Telepresence

Force feedback training simulator for endoscopic surgery.
All physical and virtual entities are modeled as OAA
agents.

Table 1: A partial list of applications written using OAA.
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Figure 1: OAA System Structure.

The facilitator is a specialized server agent that is responsible for coordinating agent com-
munications and cooperative problem-solving. In many systems, the facilitator is also used
to provide a global data store for its client agents, which allows them to adopt a blackboard
style of interaction. Note that a system configuration is not limited to a single facilitator.
Larger systems can be assembled from multiple facilitator/client groups, each having the
sort of structure shown in Figure 1.

The other categories of agents illustrated here — application agents, meta-agents, and user
interface agents — are categories recognized by convention only; that is, they are not formally
distinguished within the system. Application agents are usually specialists that provide a
collection of services of a particular sort. These services could be domain-independent (such
as speech recognition, natural language processing, email, and some forms of data retrieval
and data mining), or domain-specific (such as a travel planning and reservations agent).
Application agents may be based on legacy applications or libraries, in which case the agent
may be little more than a wrapper that calls a pre-existing API.

Meta-agents are those whose role is to help advise the facilitator agent during its multi-
agent coordination phase. While the facilitator possesses a number of domain-independent
coordination strategies, meta-agents augment these using application-specific knowledge or
reasoning (e.g. rules, learning algorithms, planning, and so forth). An example of a meta-
agent would be the notification agent from the Office Assistant application. The notification
agent makes use of rules concerning the optimal use of different modalities (email, fax, speech
generation over the telephone) plus information about an individual user’s preferences to



determine the best way of of relaying a message using available media transfer application
agents.

The user interface agent plays an extremely important and interesting role in many OAA
systems. In some systems, this agent is implemented as a collection of “micro-agents”, each
monitoring a different input modality (point-and-click, handwriting, pen gestures, speech),
and collaborating to produce the best interpretation of the current inputs. These micro-
agents are shown in Figure 1 as Modality Agents.

All agents that are not facilitators are referred to as client agents — so called because each
acts (in some respects) as a client of some facilitator, which provides communication and
other essential services for the client. When invoked, a client agent makes a connection to
a facilitator, which is known as its parent facilitator. Upon connection, an agent informs its
parent facilitator of the services it is capable of providing. When the agent is needed, the
facilitator sends it a request expressed in the Interagent Communication Language (ICL). The
agent parses this request, processes it, and returns answers or status reports to the facilitator.
In processing a request, the agent can make use of a variety of capabilities provided by OAA.
For example, it can use ICL to request services of other agents, set triggers, and read or write
shared data on the facilitator (or other client agents that maintain shared data).

The common infrastructure for constructing agents is supplied by an agent library, which
is available in several different programming languages. The library has been designed to
minimize the effort required to construct a new system, and to maximize the ease with which
legacy systems can be agentified.

In the following sections, we give a more detailed description of how an OAA system is
assembled. We order the presentation top-down, beginning with the means by which a
group of agents work together, then considering the mechanisms that support the use of
shared data repositories and temporal task specifications, and finally describing some of
the basic infrastructure underlying communications between agents and the construction of
individual agents. Although there is insufficient space to cover all of its technical aspects,
we nevertheless hope to give the flavor of the technology using examples and discussion of
the most important points.

4 Mechanisms of Cooperation

Cooperation among the agents of an OAA system is achieved via messages expressed in a
common language, ICL, and is normally structured around a 3-part approach: providers of
services register capabilities specifications with a facilitator; requesters of services construct
goals and relay them to a facilitator, and facilitators coordinate the efforts of the appropriate
service providers in satisfying these goals.



4.1 The Interagent Communication Language

OAA’s Interagent Communication Language (ICL) is the interface, communication, and task
coordination language shared by all agents, regardless of what platform they run on or
what computer language they are programmed in. ICL is used by an agent to task itself or
some subset of the agent community, either using explicit control or, more frequently, in an
unspecified, loosely constrained manner. OAA agents employ ICL to perform queries, execute
actions, exchange information, set triggers, and manipulate data in the agent community.

One of the most important program elements expressed in ICL is the event. The activities of
every agent, as well as communications between agents, are structured around the transmis-
sion and handling of events. In communications, events serve as messages between agents; in
regulating the activities of individual agents, they may be thought of as goals to be satisfied.

Each event has a type, a set of parameters, and content. For example, the agent library
procedure oaa_Solve can be used by an agent to request services of other agents. A call to
oaa_Solve, within the code of agent A, results in an event having the form

ev_post_solve(Goal, Params)

going from A to the facilitator, where ev_post_solve is the type, Goal is the content, and
Params is a list of parameters. The allowable content and parameters vary according to the
type of the event.

The ICL includes a layer of conversational protocol, similar in spirit to that provided by
KQML, and a content layer, analogous to that provided by KIF. The conversational layer of
ICL is defined by the event types, together with the parameter lists that are associated with
certain of these event types. The content layer consists of the specific goals, triggers, and
data elements that may be embedded within various events.

The conversational protocol makes use of an orthogonal, parameterized approach. That is,
the conversational aspects of each element of an interagent conversation are represented by
a selection of an event type, in combination with a selection of values for an orthogonal set
of parameters. This approach offers greater expressiveness than an approach based solely
on a fixed selection of speech acts, such as embodied in KQML. For example, in KQML, a
request to satisfy a query can employ either of the performatives ask_all or ask_one. In ICL,
on the other hand, this type of request is expressed by the event type ev_post_solve, together
with the solution_limit(N) parameter — where N can be any positive integer. (A request for
all solutions is indicated by the omission of the solution_limit parameter.) The request can
also be accompanied by other parameters, which combine to further refine its semantics.

In KQML, then, this example forces one to choose between two possible conversational op-
tions, neither of which may be precisely what is desired. In either case, the performative
chosen is a single value which must capture the entire conversational characterization of the
communication. This requirement raises a difficult challenge for the language designer, to
select a set of performatives that provides the desired functionality without becoming un-



manageably large. Consequently, the debate over the right set of performatives has consumed
much discussion within the KQML community.

The content layer of the ICL has been designed as an extension of the Prolog programming
language, in order to take advantage of unification and other features of Prolog. OAA’s agent
libraries (especially the non-Prolog versions) provide support for constructing, parsing and
manipulating ICL expressions.

While it is possible to embed content expressed in other languages within an ICL event, it is
advantageous to express content in ICL wherever possible. The primary reason for this is to
allow the facilitator access to the content, as well as the conversational layer, in delegating
requests. Not only does this give the facilitator more information about the nature of a
request, but it also makes it possible for the facilitator to decompose compound requests,
and delegate the subrequests individually.

A number of important declarations and other program elements are represented using ICL
expressions. These include, in addition to events, capabilities declarations, requests for ser-
vices, responses to requests, trigger specifications, and shared data elements. In subsequent
sections, we consider each of these elements.

4.2 Providing Services

Every agent participating in an OAA-based system defines and publishes a set of capabilities
declarations, expressed in ICL, describing the services that it provides. These establish a
high-level interface to the agent, which is used by a facilitator in communicating with the
agent, and, most important, in delegating service requests (or parts of requests) to the agent.
Partly due to the use of Prolog as the basis of ICL, we refer to these capabilities declarations
as solvables.

Two major types of solvables are distinguished: procedure solvables and data solvables. In-
tuitively, a procedure solvable performs a test or action, whereas a data solvable provides
access to a collection of data. For example, in creating an agent for a mail system, proce-
dure solvables might be defined for sending a message to a person, testing whether a message
about a particular subject has arrived in the mail queue, or displaying a particular message
onscreen. For a database wrapper agent, one might define a distinct data solvable corre-
sponding to each of the relations present in the database. Often a data solvable is used to
provide a shared data store, which may be not only queried, but also updated, by a number
of agents having the required permissions.

Technically, the primary differences between the two types of solvables are these: First,
each procedure solvable must have a handler declared and defined for it, whereas this is
not necessary for a data solvable. (The handling of requests for a data solvable is provided
transparently by the agent library.) Second, data solvables are associated with a dynamic
collection of facts (or clauses), which may be modified at runtime, both by the agent providing
the solvable, as well as by other agents (provided they have the required permissions). Third,
there are a variety of special features available for use with data solvables, which facilitate



maintaining the associated facts. Some of these are mentioned below, in Section 5.

In spite of these differences, it should be noted that the means of use (that is, the means
by which an agent requests a service) is the same for the two types of solvables. Requesting
services is described in Section 4.3 below.

A request for one of an agent’s services normally arrives in the form of an event from the
agent’s facilitator. This event is then handled by the appropriate handler. The handler may
be coded in whatever fashion is most appropriate, depending on the nature of the task, and
the availability of task-specific libraries or legacy code, if any. The only hard requirement is
that the handler return an appropriate response to the request, expressed in ICL. Depending
on the nature of the request, this response could be an indication of success or failure, or a
list of solutions (when the request is a data query).

The agent library provides a set of procedures allowing an agent to add, remove, and modify
its solvables, which it may do at any time after connecting to its facilitator.

4.2.1 Specification of Solvables

A solvable has three parts: a goal, a list of permissions, and a list of parameters, which are
declared using this format:

solvable(Goal, Parameters, Permissions)

The goal of a solvable, which syntactically takes the form of an ICL structure, gives a logical
representation of what service is provided by the solvable. (An ICL structure consists of a
functor with 0 or more arguments. For example, in the structure a(b,c), ’a’ is the functor, and
'b’ and ’¢’ the arguments.) As with a Prolog structure, the goal’s arguments may themselves
be structures, if desired.

Various options can be included in the parameters list, to refine the semantics associated
with the solvable. First and foremost, the type parameter is used to say whether the solvable
is data or procedure. When the type is procedure, another parameter may be used to indicate
the callback function to be associated with the solvable. Some of the parameters appropriate
for a data solvable are mentioned in Section 5.

In either case (procedure or data solvable), the private parameter may be used to restrict
the use of a solvable to the declaring agent. This has value in two types of situations: when
the agent intends the solvable to be solely for its internal use, and wants to take advantage
of OAA mechanisms in accessing it; and when the agent wants the solvable to be available
to outside agents only at selected times. In support of the latter case, it is possible for the
agent to change the status of a solvable from private to non-private at any time.

The permissions of a solvable provide the means by which an agent may control access to its
services. They allow the agent to restrict calling and writing of a solvable to itself and/or
other selected agents if desired. (Calling means requesting the service encapsulated by a
solvable, whereas writing means modifying the collection of facts associated with a data
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solvable®.) The default is for every solvable to be callable by anyone, and for data solvables
to be writable by anyone. A solvable’s permissions can be changed at any time.

For example, the solvables of a simple email agent might include these:

solvable(send_message(email, +ToPerson, +Params),
[type(procedure), callback(send_mail)],
[

solvable(last_message(email, -Messageld),
[type(data), single_value(true)],
[write(true)]l),

solvable(get_message(email, -Messageld, +Msg),
[type(procedure), callback(get_mail)],
HD)

The symbols ‘+’ and ‘-’, indicating input and output arguments, are at present used only for
purposes of documentation. Note that most parameters and permissions have default values,
and specifications of default values may be omitted from the parameters and permissions
lists.

When a programmer defines an agent’s capabilities in terms of solvable declarations, he or
she is in a sense creating the vocabulary with which other agents will communicate with the
new agent. The problem of ensuring that agents will speak the same language and share a
common, unambiguous semantics of the vocabulary, is called the ontology problem. The OAA
provides a few tools (see more about agent development tools in [12]) and services (automatic
translations of solvables by the facilitator) to help minimize this issue; however, the OAA still
must rely on vocabulary from either formally engineered ontologies for specific domains (for
instance, see http://www-ksl.stanford.edu/knowledge-sharing/ontologies/html/) or else on
ontologies constructed during the incremental development of a body of agents for a number
of applications.

Although the OAA imposes no hard restrictions (other than the basic syntax) on the form
of solvable declarations created by a programmer, several recommendations try to promote
“good OAA interface style”. These include:

e Classes of items are often tagged by a particular type. For instance, in the example
above, the ’email’ parameter of “last_message” and “get_message” does not add specific
information to the predicate, but serves during an ICL request to select (or not) a
specific type of message.

e Actions are generally written using an imperative verb as the functor of the solvable, the
direct object (or item class) as the first argument of the predicate, required arguments
following, and then an extensible parameter list as the last argument. The parameter
list will often serve to hold optional information usable by the function. The ICL

2There are also permissions allowing an outside agent to read and/or redefine the handler associated with
a procedure solvable, but these capabilities are not fully developed, and are presently available only with
agents implemented in Prolog.
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expression generated by a natural language parser often makes use of this parameter
list to store prepositional phrases and adjectives.

As an illustration of the above two points, “Send mail to Bob about lunch” will be translated
into an ICL request send_message(email, 'Bob Jones’, [subject(lunch)]), whereas “Remind
Bob about lunch” would leave the transport unspecified (send_message(KIND, 'Bob Jones’,
[subject(lunch)])), enabling all available message transfer agents (e.g. fax, phone, mail,
pager) to compete for the right to effectuate the action.

4.3 Requesting Services

An agent requests services by sending goals to its facilitator. Each goal contains calls to
one or more solvables. It is important to understand that calling a solvable does not require
that the agent specify (or even know of) a particular agent to handle the call. While it is
possible to specify one or more agents to handle a call (and there are situations in which this
is desirable), in general it is advantageous to leave this delegation task to the facilitator.

The OAA libraries provide an agent with a single, unified point of entry for requesting
services of other agents: the library procedure oaa_Solve, which has been introduced above.
In the style of logic programming, oaa_Solve may be used both to retrieve data and to initiate
actions. To put this another way, calling a data solvable looks the same as calling a procedure
solvable.

4.3.1 Compound Goals

One of the most powerful features of OAA is the ability of a client agent (or a user) to submit
compound goals to a facilitator. A compound goal is composed using operators similar to
those employed by Prolog; that is, the comma for conjunction, the semicolon for disjunction,
and the arrow for conditional execution. There are also several significant extensions to
Prolog syntax and semantics; three are of particular interest here. First, there is a “parallel
disjunction” operator that indicates the disjuncts are to be executed (by different agents)
simultaneously. Second, it is possible to specify whether a given subgoal is to be executed
breadth-first or depth-first3. Third, each subgoal of a compound goal can have an address
and/or a set of parameters attached to it. Thus, each subgoal takes the form:

Address:Goal::Parameters

where both Address and Parameters are optional.

An address, if present, specifies one or more agents to handle the given goal, and may employ
several different types of referring expressions: unique names, symbolic names, and shorthand
names. Every agent has a unique name, assigned by its facilitator, which relies upon network

3This capability is under development at the time of writing.
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addressing schemes to ensure its global uniqueness. Agents also have self-selected symbolic
names (for example, “mail”), which are not guaranteed to be unique. When an address
includes a symbolic name, the facilitator takes this to mean that all agents having that
name should be called upon. Shorthand names include ‘self’ and ‘parent’ (which refers to
the agent’s facilitator). We emphasize that the address associated with a goal or subgoal
is always optional. When an address is not present, it is the facilitator’s job to supply an
appropriate address, as explained in Section 4.5.

4.4 Refining Service Requests

The parameters associated with a goal (or subgoal) can draw on a number of useful features
to refine the request’s meaning. We have mentioned elsewhere the ability to specify whether
or not the solutions are to be returned synchronously; this is done using the reply parameter,
which can take any of the values synchronous, asynchronous, or none. As another example,
when the goal is a non-compound query of a data solvable, the cache parameter may be used
to request local caching of the facts associated with that solvable.

Many of the remaining parameters fall into two categories: advice and meta-data.

o Advice parameters give constraints or guidance for the facilitator to use in complet-
ing and interpreting the goal. For example, the solution_limit parameter allows the
requester to say how many solutions it is interested in; the facilitator and/or ser-
vice providers are free to use this information in optimizing their efforts. Similarly,
time_limit is used to say how long the requester is willing to wait for solutions to its
request, and, in a multi-facilitator system, level_limit may be used to say how how re-
mote the facilitators may be that are consulted in the search for solutions. The priority
parameter is used to indicate that a request is more urgent than previous requests that
have not yet been satisfied. Other advice parameters are used to tell the facilitator
whether parallel satisfaction of a goal is appropriate, and whether the requester itself
may be considered a candidate solver of the subgoals of a request.

e Meta-data parameters allow a service requester to receive feedback from the facilitator
about the handling of a goal. This feedback can include such things as the identities
of the agents involved in satisfying the goal, and the amount of time expended in the
satisfaction of the goal.

When a facilitator receives a compound goal, its job is to construct a goal satisfaction plan
and oversee its satisfaction in the most appropriate, efficient manner that is consistent with

the specified advice. In the following section, we describe the facilitator’s approach to doing
this.

4.5 Facilitation

Facilitation plays a central role in OAA. At its core, our notion of facilitation is similar to
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that proposed by Genesereth ([7]) and others. In short, a facilitator maintains a knowledge
base that records the capabilities of a collection of agents, and uses that knowledge to assist
requesters and providers of services in making contact. But our notion of facilitation is also
considerably stronger in three respects.

First, it encompasses a very general notion of transparent delegation. This means that
a requesting agent can generate a request, and a facilitator can manage the satisfaction
of that request, without the requester needing to have any knowledge of the identities or
locations of the satisfying agents. In some cases, such as when the request is a data query,
the requesting agent may also be oblivious to the number of agents involved in satisfying
a request. Transparent delegation is possible because agents’ capabilities (solvables) are
treated as an abstract description of a service, rather than as an entry point into a library
or body of code.

Second, an OAA facilitator is distinguished by its handling of compound goals, which are
introduced above (Section 4.3.1). This involves three types of processing: delegation, that
is, completion of the addresses embedded within a compound goal; optimization of the com-
pleted goal, including parallelization where appropriate; and interpretation of the optimized
goal. The delegation step results in a goal that is unambiguous as to its meaning and as to
the agents that will participate in satisfying it. Completing the addressing of a goal involves
the selection of one or more agents to handle each of its subgoals (that is, each subgoal for
which this selection has not been specified by the requester). In doing this, the facilitator
uses its knowledge of the capabilities of its client agents (and possibly of other facilitators, in
a multi-facilitator system). It may also use strategies or advice specified by the requester, as
explained below. The optimization step results in a goal whose interpretation will require as
few exchanges as possible, between the facilitator and the satisfying agents, and can exploit
parallel efforts of the satisfying agents, wherever this does not affect the goal’s meaning. The
interpretation of a goal involves the coordination of requests to the satisfying agents, and
assembling their responses into a coherent whole, for return to the requester.

The third respect in which OAA facilitation extends the basic concept of facilitation is that
the facilitator can employ strategies and advice given by the requesting agent. Some of these
are mentioned above (Section 4.4), and some additional possibilities under consideration are
mentioned in Section 9.

It should be noted that the reliance on facilitation is not absolute; that is, there is no hard
requirement that requests and services be matched up by the facilitator, or that inter-agent
communications go through the facilitator. (Indeed, as mentioned elsewhere, there is support
in the agent library for explicit addressing of requests, and planned support for peer-to-peer
communications.) However, OAA has been designed so as to encourage developers to employ
the paradigm of community, and to minimize their development effort in doing so, by taking
advantage of the facilitator’s provision of transparent delegation and handling of compound
goals.
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5 Maintaining Data Repositories

The agent library supports the creation, maintenance, and use of databases, in the form of
data solvables. Creation of a data solvable requires only that it be declared, as explained
in Section 4.2.1. Querying a data solvable, as with access to any solvable, is done using
oaa_Solve. Here, we clarify the ways in which these solvables are maintained and used, and
mention some of the features associated with them.

A data solvable is conceptually the same as a relation in a relational database. The facts as-
sociated with each solvable are maintained by the agent library, which also handles incoming
messages containing queries of data solvables. It is possible to refine the default behavior of
the library in managing these facts, using parameters specified with the solvable’s declara-
tion. For example, the parameter single_value is used to indicate that the solvable should
only contain a single fact at any given point in time. The parameter unique_values indicates
that no duplicate values should be stored.

Other parameters can allow data solvables to make use of the concepts of ownership and
persistence. Because data solvables are often used to implement shared repositories, it is
often useful to maintain a record of which agent created each fact of a solvable; this agent
is considered to be the fact’s owner. In many applications, it is useful to have an agent’s
facts removed when that agent goes offline (that is, the agent is no longer participating in
the agent community, whether by deliberate termination or by malfunction). When a data
solvable is declared to be non-persistent, its facts are automatically maintained in this way,
whereas a persistent data solvable retains its facts until they are explicitly removed.

The agent library provides procedures by which agents can update (add, remove, and replace)
facts belonging to data solvables, either locally or on other agents, given that they have the
required permissions. These procedures may be refined using many of the same parameters
that apply to service requests. For example, the address parameter is used to specify one
or more particular agents to which the update request applies. In its absence, just as with
service requests, the update request goes to all agents providing the relevant data solvable.
This default behavior can be used to maintain coordinated “mirror” copies of a data set
within multiple, distributed, agents.

Similarly, the meta-data parameters, described in connection with oaa_Solve, are also avail-
able for use with data maintenance requests.

The ability to provide data solvables is not limited to client agents; they can also be main-
tained by a facilitator if desired, at the request of a client of the facilitator, and their
maintenance and use shared by all the facilitator’s clients. This can be a useful strategy
with a relatively stable collection of agents, where the facilitator’s workload is predictable.
The following subsection provides an example of this usage.
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5.1 Using a Blackboard Style of Communication

When a data solvable is publicly readable and writable, it may be thought of as a global
data repository, which can be used cooperatively by a group of agents. In combination with
the use of triggers, this allows the agents to organize their efforts around a “blackboard”
style of communication.

As an example, the NL agent (one of several existing natural language processing agents),
which provides natural language processing services for a variety of its peer agents, expects
those other agents to record, on the facilitator, the vocabulary that they are prepared to
respond to, with an indication of each word’s part of speech, and of the logical form (ICL
subgoal) that should result from the use of that word. To make this possible, when it comes
online, the NL agent installs a data solvable for each basic part of speech on its facilitator.
For instance, one such solvable would be:

solvable(noun(Meaning, Syntax), [1, [1)

(Note that the empty lists for the solvable’s permissions and parameters are acceptable here,
since the default permissions and parameters provide appropriate functionality for this case.)

In the Office Assistant system, a number of agents make use of these services. For instance,
the database agent uses the following call, to library procedure oaa_AddData, to post the
noun ‘boss’, and to indicate that the “meaning” of boss is the concept ‘manager’:

oaa_AddData(noun(manager, atom(boss)), [address(parent)])

6 Autonomous Monitoring Using Triggers

OAA triggers provide a general mechanism for requesting that some action be taken when
some set of conditions is met. Each agent can install triggers either locally, for itself, or
remotely, on its facilitator or peer agents. There are four types of triggers: communication,
data, task, and time triggers. In addition to a type, each trigger specifies a condition and an
action, both expressed in ICL. The condition indicates under what circumstances the trigger
should fire, and the action indicates what should happen when it fires. In addition, each
trigger can be set to fire either an unlimited number of times, or a specified number of times,
which can be any positive integer.

The four types of triggers can be characterized informally as follows:

e Communication triggers allow any incoming or outgoing event (message) to be moni-
tored. For instance, a simple communication trigger may say something like:

“Whenever a solution to a goal is returned from the facilitator, send the result to the
presentation manager to be displayed to the user.”
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e Data triggers monitor the state of a solvable data set (which can be maintained on a
facilitator or a client agent). An example data trigger is:

“When 15 users are simultaneously logged on to a machine, send an alert message to
the system administrator.”

e Task triggers are monitored after the processing of each incoming event, and also
whenever a timeout occurs in the event polling. Task triggers specify a test that must
succeed for the trigger to fire. This test may specify any goal executable by the local
ICL interpreter, and most often is used to test when some solvable becomes satisfiable.

Task triggers are useful for checking for task-specific internal conditions. Although in
many cases such conditions are captured by solvables, in other cases they may not be.
For example, a mail agent might watch for new incoming mail, or an airline database
agent may monitor which flights will arrive later than scheduled. An example task
trigger is

“When mail arrives for me about security, notify me immediately.”

e Time triggers monitor time conditions. For instance, an alarm trigger can be set to
fire at a single fixed point in time (eg. “On december 23rd at 3pm”), or on a recurring
basis (eg. “Every three minutes from now until noon”).

Triggers are implemented as data solvables, declared implicitly for every agent. When re-
questing that a trigger be installed, an agent may use many of the same parameters that
apply to service and data maintenance requests.

7 Basic Infrastructure

7.1 The Agent Library

OAA’s agent library, which provides the necessary infrastructure for constructing an agent-
based system, is available in several programming languages, including Prolog, C, Java, Lisp,
Visual Basic, and Delphi. As mentioned above, two goals of the library’s design have been
to minimize the effort required to construct a new system, and to maximize the ease with
which legacy systems can be agentified.

The library provides several families of procedures, which provide all the functionalities
mentioned in this paper, as well as many that are omitted, for lack of space. For ex-
ample, declarations of an agent’s solvables, and their registration with a facilitator, are
managed using procedures such as oaa_Declare, oaa_Undeclare, and oaa_Redeclare. Updates
to data solvables can be accomplished with a family of procedures including oaa_AddData,
oaa_RemoveData, and oaa_ReplaceData. Similarly, triggers are maintained using procedures
such as oaa_AddTrigger, oaa_RemoveTrigger, and oaa_ReplaceTrigger.

The essential elements of protocol (that is, the details of the messages that encapsulate a
service request and its response) are provided by the library, and made transparent in so far as
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possible, so that application code can be simpler. This enables the developer to focus on the
desired functionality, rather than the details of message construction and communication.
For example, to request a service of another agent, an agent calls the library procedure
oaa_Solve. This call results in a message to a facilitator, which will exchange messages with
one or more service providers, and then send a message containing the desired results to
the requesting agent. These results are then returned via one of the arguments of oaa_Solve.
None of the messages involved in this scenario is explicitly constructed by the agent developer.
(Note that this is a description of the synchronous use of oaa_Solve.)

The agent library provides both intraagent and interagent infrastructure; that is, mechanisms
supporting the internal structure of individual agents, on the one hand, and mechanisms of
cooperative interoperation between agents, on the other. It is worth noting that most of
the infrastructure cuts across this boundary; that is, many of the same mechanisms support
both agent internals and agent interactions in an integrated fashion. For example, services
provided by an agent can be accessed by that agent through the same procedure (oaa_Solve)
that it would employ to request a service of another agent (the only difference being in the
address parameter accompanying the request, as is explained below). This, in turn, helps
the developer to reuse code and avoid redundant entry points into the same functionality.

Both of the characteristics described above (transparent construction of messages and inte-
gration of intraagent with interagent mechanisms) apply to most other library functionality
as well, including data management and temporal control mechanisms.

7.2 The Event Loop

Although there may be exceptions, each client agent is normally structured around an event
loop, the functionality of which is provided by the agent library. The operation of the event
loop is to repeatedly check the agent’s event queue, to see if any events have arrived from
the agent’s facilitator. When an event arrives, it is handled in one of three ways, depending
on its type:

e If it is a built-in event, it is handled automatically by the agent library.

o If it is a task-specific event, that is, an event corresponding to one of the agent’s
procedure solvables, the agent library calls the developer-defined callback procedure,
with the event and a parameter list as arguments.

e Occasionally there is a hybrid event; that is, an event that is normally built-in, but its
handling in certain situations is left to the developer. In these situations, the developer
has access to these events (but may also ignore them if desired). An example of this
is when results of a call to oaa_Solve are returned asynchronously.

For agents that provide a traditional user interface, support is provided for integrating the
agent event loop with the event loops of X Windows and other graphical systems.
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8 Related Work

Agent-based systems have shown much promise for flexible, fault-tolerant, distributed prob-
lem solving. Much of the work on agent technology has focused on interagent communication
protocols [22], patterns of conversation for agent negotiation [5], and basic facilitation ca-
pabilities including agent name servers and other types of registry services (e.g., brokers,
matchmakers) [21].

Because there is insufficient space here to cover the gamut of work on agent architectures, we
restrict ourselves to mentioning several projects that have helped to evolve some notion of
facilitation. Genesereth has emphasized the role of a facilitator [9, 8], and, in [9], describes
a facilitator based on logical reasoning. This facilitator shares our emphasis on content-
based routing and the synthesis of complex multistep delegation plans, but doesn’t go as far
as OAA in allowing the service requester to influence the strategies used by the facilitator.
Similarly, the InfoSleuth system ([18]) employs matchmaking agents having the ability to
reason deductively about whether expressions of requirements (by requesters) match with the
advertised capabilities of service providers. KQML [11, 22] provides “capability-definition
performatives”, such as advertise, and “facilitation performatives”, such as broker_one and
broker_all. While these performatives may be suitable for structuring the basic interactions
between the players in a facilitated system, it should be noted that they provide only a
communication protocol. That is, the specific strategies employed by a facilitator, and
the means of advising a facilitator in selecting a strategy, are beyond the scope of KQML
specifications. Sycara et al. ([21]) delineate the concepts of matchmaking, brokering, and
facilitation in a useful way, and explore the tradeoffs inherent in the use of these approaches.
Overall, they find that a brokered or facilitated system can exhibit dramatically better
performance than one based on matchmaking.

9 Future Directions

Much work remains to be done, both at implementation and conceptual levels. Areas for
further investigation include scalability, robustness (fault tolerance), improved development
and runtime tools, and improved facilitation strategies and services.

The use of facilitators offers both advantages and weaknesses with respect to scalability and
fault tolerance. On the plus side, the grouping of a facilitator with a collection of client agents
provides a natural building block from which to construct larger systems. On the minus side,
there is the potential for a facilitator to become a communications bottleneck, or a critical
point of failure. In tasks requiring a sequence of exchanges between two agents, it is possible
for a facilitator to assist them in finding one another and establishing communications, but
then to step out of the way while they communicate over a direct, dedicated channel. This
is a relatively straightforward extension to our approach, which we plan to incorporate.
For more complex task configurations, we see three general areas to explore in addressing
these issues. First, there are a variety of multi-facilitator topologies that can be exploited
in constructing large systems. It would be useful to investigate which of these exhibits the
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most desirable properties with respect to both scalability and fault tolerance. Second, it
is possible to modularize the facilitator’s key functionalities. For example, goal planning
(delegation and optimization) can readily be separated from goal execution. Given this,
one can envision a configuration in which the execution task is distributed to other agents,
thus freeing up the facilitator. Third, we would like to incorporate mechanisms for basic
transaction management, periodically saving the state of agents (both facilitator and client),
and rolling back to the latest saved state in the event of the failure of an agent.

With respect to agent development tools, we plan on updating our initial work in this area
(described at PAAMO96 in [12]) to a more group-oriented and web-centric design. Improve-
ments to the linguistic tools, and a graphical monitoring agent would also be desirable.

While much work has been done by agent researchers to demonstrate increased autonomy
of individual agents (particularly in the category of information filtering and personal assis-
tants), smarter and more autonomous facilitators (or other means of coordinating multiple
agents) are likely to be more critical to the evolution of multiagent systems. Our experience
to date has shown value in the handling of compound goals, with advice parameters, by
facilitators. However, the advice is still relatively simple, and the discretion exercised by the
facilitator relatively limited. Thus, we are interested in exploring the use of more sophisti-
cated strategies by the facilitator, guided by a higher level of advice. It may be possible to
draw upon existing work in the (artificial intelligence) field of planning and the (database)
field of query planning. Facilitation is also likely to benefit from richer representations of
agents’ capabilities.

10 Summary

The Open Agent Architecture provides a framework for the construction of distributed soft-
ware systems, which facilitates the use of cooperative task completion by flexible, dynamic
configurations of autonomous agents. We have presented the rationale underlying its design,
compared its features to those of other distributed frameworks, and summarized the appli-
cations built to date using it. In addition, we have described the major components of OAA
infrastructure, and how they are used in assembling an agent-based system.
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