Information Brokering in an Agent Architecture

David Martin Hiroki Oohama
Artificial Intelligence Center Laboratory of Information Technology
SRI International NTT Data
martin@ai.sri.com hama@lit.rd.nttdata.co.jp
Douglas Moran Adam Cheyer
Artificial Intelligence Center Artificial Intelligence Center
SRI International SRI International
moran@aj.sri.com cheyer@ai.sri.com
Abstract

To date, document identification based on keyword matching strategies has been
the basis of most efforts to provide assistance in accessing information resources on
the Internet. However, in view of the limitations on human browsing time and the
evolution of more capable software agents, we can expect rapid expansion in the use
of fully queryable information sources (such as databases and knowledge bases) and
semiqueryable sources (such as form-based query pages on the World Wide Web, and
collections of Web pages that are structured by textual markups).

The ability to obtain information from a wide variety of queryable and semi-
queryable sources is a prerequisite for the success of many types of software agents.
Providing access to these sources — whether for end users or for software agents act-
ing on behalf of users — poses a number of interesting challenges, many of which can
themselves be addressed using agent-based approaches.

This paper describes a working prototype Information Broker system, developed
within the Open Agent Architecture framework, that provides transparent access to
a variety of information sources, each encapsulated as an independent agent. In this
system, a broker meta-agent provides flexible mediation services, accepting queries
expressed in broker or source schemas, gathering and integrating all available responses
from the relevant sources, and allowing for the addition or deletion, at runtime, of
participating information sources. Other broker features support the use of conversions,
normalizations, and other basic domain knowledge in queries, and persistent queries (for
which the Broker notifies requestors of changes in information sources that could affect
their results). Source agents implement caching and retrieval strategies that alleviate
problems related to the long access times and unreliability of Internet sources.

1 Introduction

The rapid growth of the World Wide Web and other forms of Internet and intranet access,
and the need for automated assistance in making use of these resources, are now widely
appreciated. The most immediate need, and the one receiving the greatest attention to
date, is in the area of document retrieval; that is, the identification of textual documents
that are relevant to some topic of interest. The topic of interest is generally indicated by
an expression containing keywords, and the goal of the retrieval is to locate documents from
which a human reader can extract useful information. A number of systems — such as NTT
Data’s InterInfo' in the commercial realm and Amalthaea [11] in the realm of agent research
— are providing increasingly sophisticated approaches to document retrieval.

1.1 Structured and Semistructured Information Sources

An equally important set of challenges, but one that has not yet become as widely recognized,
exists in the area of structured and semistructured information sources. By structured infor-
mation sources, we mean sources that can be queried by using well-defined, general query
languages, such as relational databases, object-oriented databases, and knowledge bases.

By semustructured information sources, we include a variety of sources that contain sufficient
structure to be treated as databases, even though they do not provide the full generality and
power of a query language. In the context of the World Wide Web, this structure is usually
provided in one (or both) of two ways: by an informal form-based query interface or by the
presence of HTML (HyperText Markup Language) markups and other textual markers used
according to site-specific conventions.

We refer to a semistructured source that provides an informal form-based query interface as
a semiqueryable source. It should be apparent that, even when such an interface is provided,
its “query” capability usually falls far short of the power and generality of a structured
information source. When a source provides structure by textual markers, we call that a
semistructured textual source.

An example of a semistructured source — in which both types of structure are present —
begins with a Web page that allows one to ask for hotels by filling in one or more of the
following items: a location, a hotel chain, or a class of accommodation (economy, standard,
luxury). This page is semiqueryable, because even though it allows for the construction
of certain simple queries, there are many others that cannot be constructed.? The result
of this query is a list of hypertext links to hotel pages, each of which contains the same
basic data in more or less the same format. Each of these pages is a semistructured textual
source of information, and each can be transformed into a set of data records, using parsing
techniques, given that the format is known.

LAll product names mentioned in this document are the trademarks of their respective holders.
2For instance, one cannot ask, in a single query, for luxury hotels in Amsterdam and economy hotels in

Paris.

1.2 The Need for Information Brokering

An information brokering system is one that provides coordinated access to a heterogeneous
collection of structured and semistructured information sources. There are three key reasons
why structured and semistructured information sources — and thus, information brokering
systems — will be of rapidly increasing importance in the Internet and intranet worlds. First,
human browsing time is both limited and, at least in the workplace, extremely expensive.
Whereas document retrieval returns a body of text from which a human browser can extract
some required data, data retrieval from structured and semistructured sources returns the
required data itself. Thus, in performing tasks where the data requirements are well defined,
there is significant economic pressure to make use of structured and semistructured sources.

Second, enterprises have large investments in legacy databases, and naturally want to lever-
age these in the context of the World Wide Web. This is especially true in light of the
decentralization of corporate resources, and other trends in business process engineering.
One straightforward way to leverage existing databases is simply to make them accessible to
employees via Web interfaces. But the potential for leverage goes much further, when one
considers the variety of ways in which legacy databases can be used in combination with
other enterprise information resources, and with information from sources on the Internet.
One role of information brokering systems is to facilitate the creation and maintenance of
applications that rely on such combinations of information sources.

Third, queryable information sources are an essential requirement for the evolution of soft-
ware agents that provide services within the context of the Internet or an intranet. By
services, we refer not just to document retrieval, but to the full gamut of services that can
be built around networked information. To provide a travel planning service or a stock
tracking service, an agent must be able to retrieve data about a specific domain, in a form
it can make use of — which requires access to structured and semistructured information.
(Although natural language processing technologies have made impressive advances in recent
years, there is still a long way to go before a program could reliably obtain this required data
from wunstructured text.) Moreover, many agents will need to access a wide and changing
variety of information sources (consider, for example, an agent that finds the best available
price for some product). As new sources become available, they will need to quickly acquire
access to those sources. Information brokering systems can provide this access in a way that
can be reused by numerous application agents.

1.3 Information Brokering and Agent Technology

Software agents will be very active consumers of the services provided by information bro-
kering systems. We also argue that agent technology yields a promising approach to con-
structing the providers of these services. That is, the individual information sources as well
as the brokering component(s) can very naturally be instantiated as agents, and their efforts
coordinated by using the mechanisms of an agent architecture.

One other general observation may be made here regarding the relationship between infor-

mation brokering and agent technology: challenges encountered in coordinating access to
information agents may be viewed as special cases of those encountered in coordinating the
activities of all types of agents. Thus, many of the techniques developed to coordinate the
satisfaction of a query by multiple agents may well be applicable to the more general problem
of facilitating the activities of agents in completing various other types of tasks.

To summarize, the role of queryable information sources will expand rapidly in the context
of Internet and intranet resources. Their use in these contexts poses several interesting chal-
lenges. Addressing these challenges is the focus of the Information Broker project, developed
within the framework of the Open Agent Architecture (OAA). Following a brief discussion of
these challenges in the next section, the remainder of this paper describes the system that
has been developed in the initial work on this project. Section 3 provides an overview of
the system, with background information about the OAA. Section 4 describes the system’s
architecture, and subsequent sections describe its individual components.

2 Challenge Areas

Our focus in this work has been on providing capabilities in two areas: mediation allows
for the transparent interoperation of heterogeneous information sources; flexible retrieval
strategies address issues such as long access times and unreliability of Internet resources.

2.1 Mediation

Mediation is a process that permits a requestor to get information from a wide variety of
sources, without having to be aware of the identities, locations, schemas, access mechanisms,
or contents of those sources. A component that performs mediation presents a single schema
to its requestors, accepts queries expressed in that schema, and handles all the details of
getting the appropriate data from the relevant information sources — each of which is likely
to operate with a different schema.

The capabilities provided by a mediator may be broken down into three subareas: delegation,
translation, and optimization. Delegation is the process of selecting the appropriate sources
from which to satisfy each subquery of a given query. Translation of each subquery into the
schemas of the selected sources must take place before the subqueries are sent to the sources
— and results returned from the sources must be translated back into the schema of the
original query. Optimization results in a query execution plan that obtains results from the
selected sources as efficiently as possible, and exploits parallelism wherever possible.

It should be noted that, in their essence, the problems of mediation are not unique to
networked environments. Some of these problems have already been studied for some time,
under the heading of heterogeneous databases. However, the emergence of the Internet has
triggered a renewed interest in these problems.® This is not only due to the massive volume

30ther projects currently exploring these issues are described in [1], [5], [6], [7], [8], [12], and [13].

4

of data that is now becoming accessible over the Internet, but also because of new aspects
of these problems that occur in the context of the Internet.

For example, the rapid creation (or discovery) of new information sources on the Internet,
and frequent restructuring of existing sources, make it very valuable for a mediator to be
able to accommodate new sources without going offline for reconfiguration. The absence
of any centralized control over information sources implies that a mediator must be able
to accommodate considerable variation in their schemas. The overhead involved in making
HTTP connections to a number of different sites requires that a mediator be able to plan a
retrieval so that it requires a minimal number of different sources.

2.2 Retrieval Strategies

In addition to the problems of mediation, Internet and intranet environments pose a number
of other challenges for integrated information systems. For instance, the unreliability and
uneven quality of Web sources may call for the exploitation of redundant or overlapping sites.
Wide variation in the access mechanisms of semistructured sources suggests that strategies
are needed to insulate the mediation component from this variation.

The use of semistructured textual sources on the Web also introduces a new set of time
factors, because first, a very large number of URL (Universal Resource Locator) accesses
may be required to process a single query, and second, parsing the text from a single site
can itself be time consuming.

Our approach to addressing these issues includes the use of caching for Web-based sources,
and several related retrieval strategies, which may be specified by information requestors.
The use of caching raises additional issues, such as when cache updates should take place,
and at what level of granularity.

3 The Information Broker System

To explore relevant issues, we created an information brokering architecture that integrates
elements from software agent technology, database technology, and Internet retrieval tech-
nology. To demonstrate this approach, we constructed a prototype system, in which a Broker
agent coordinates access to a variety of information resources in the domain of travel.

The prototype system illustrates two different ways in which the Broker agent can be used:

e A direct query interface allows the user to enter specific queries about hotels, relays the
queries to the Broker, and formats the results for the user. In the prototype system,
this interface is provided by a Web page.

e A service-providing agent insulates the user from query details, and can employ a user
model in obtaining and evaluating the information needed for a specific task. In the

prototype system, this is demonstrated by the Travel Planner Agent (TPA), which
accepts some basic trip constraints from the user, obtains hotel and flight data from
the Broker, and uses that data to formulate desirable itineraries.

In both cases, the Broker obtains and integrates the requested information from several
heterogeneous sources, each of which participates in the system as an independent agent.
These include several Web-based sources providing hotel information, a relational database
of flight information, a Web-based source that provides the latest available rates of currency
exchange, and a corporate database listing rates for hotel chains which grant a discount.

Broker features allow for expression of queries in broker or in source schemas, the use of
conversions, normalizations, and other basic domain knowledge in queries, flexibility in the
means of retrieval, and persistent query capabilities. These features are explained in greater
detail below.

The following subsection gives a brief overview of the OAA, the framework in which the
agents of the brokering system operate.

3.1 The Open Agent Architecture

The Open Agent Architecture provides a framework for integrating a society of software
agents, each possessing a high degree of independence and autonomy, within a distributed
environment. A collection of agents satsifies requests from users, or other agents, by acting
cooperatively, under the direction of one or more facilitators (which are themselves agents
of a special type).

The system’s architecture uses a hierarchical configuration in which each application agent
connects as a client of a facilitator. Facilitators provide content-based message routing, global
data management, and process coordination for their set of connected agents. Facilitators
can, in turn, be connected as clients of other facilitators.

Agents share a common communication language and a number of basic structural charac-
teristics and capabilities. An agent library provides this common functionality. For example,
every agent can install local or remote triggers on data, events or messages; manipulate global
data stored by facilitators; and request solutions for a set of goals, to be satisfied under a
variety of different control strategies. In addition, the agent library provides functionality
for parsing and translating expressions in the Interagent Communication Language, and for
managing network communication using TCP /IP.

The OAA’s Interagent Communication Language (ICL) is the interface language shared by
all agents, no matter what machine they are running on or what computer language they
are programmed in. The ICL has been designed as an extension of the Prolog programming
language, in order to take advantage of unification and backtracking during interactions
among agents.

The OAA is described in greater detail in [3], [9], and [10].

4 System Architecture

As shown in Figure 1, the central functionality of the system is provided by the Information
Broker agent, working in close cooperation with the OAA Facilitator. The Broker accepts
requests (queries) from either a direct query interface or a service-providing (helper) agent,
as shown at the left of the figure. While the demonstration system includes only one of each
type, there is no limit in principle to the number of requestors the Broker can serve, except
for the constraints imposed by processing time and communications bandwidth.

HTTP Retrieval
Agent sQ WWW
7, Semi-
/S . s’rrSuc’rured H
” ource
Direct . Facilitator
Query R
Inferface WWW
- — ; Structured |
BR Source
] - RDB
Source [
Helper — T —
Ul — P KB
Agent .~ / — Source |
User | L .
Model Information —
""""""""""" Broker Broker Source \ Mu”ImedIO
Schema Schemas Source

Figure 1: Information Broker system architecture

The Broker delegates, translates, and relays the appropriate subqueries to the available
source agents (shown at the right of Figure 1), and then accepts the results and reintegrates
them for return to the requestor. Each source agent is an encapsulation, as an OAA agent,
of some information source. Web-based source agents make use of an HT'TP retrieval agent,
which is shown at the top of the figure.

In the figure, BQ (Broker Query) and BR (Broker Response) refer to items expressed in
the broker schema, whereas S@ (Source Query) and SR (Source Response) refer to items
expressed in a source schema — as explained in the next section. RDB abbreviates Relational

7

DataBase, and KB abbreviates Knowledge Base.*

5 The Broker Agent

The Broker agent provides transparent access to a collection of heterogeneous information
sources in a given domain. Transparent means that an information requestor (a query in-
terface agent or some other agent) need not be concerned with any details regarding the
Broker’s information sources. The Broker publishes a fixed schema, the broker schema, that
is used in constructing queries, and this schema is all that is needed by a requestor to make
use of the Broker’s services.

Schema, here, is essentially the same as a relational database schema. From the developer’s
point of view, equivalently, it may be thought of as a collection of Prolog predicates.” With
respect to the broker schema, some of these predicates are implemented locally, at the Broker,
whereas others are implemented remotely, at the sources.

Queries submitted to the Broker are expressions in the Interagent Communication Language
(ICL), the language of the OAA. Each query is syntactically the same as a Prolog goal,
usually a compound goal. For an OAA developer using the Broker’s services, the ICL has two
advantages: first, it is easily understood, and familiar to anyone who knows Prolog or the
logical style of expressing database queries; second, it allows the developer to take advantage
of Prolog-style unification and backtracking in expressing and processing queries.

When the Broker receives a query, it uses schema mapping rules to determine which parts of
the query should go to which sources, and then to translate each subquery into the schemas
of those sources to which it will be sent. (This process is described in greater detail below.)
After the responses to the subqueries are received, the Broker translates them into the broker
schema and integrates them into a single response, which is then returned to the requestor.

Thus, the Broker insulates an information requestor from the heterogeneity of schemas that
is likely to be present in any collection of information sources. The Broker has this core
functionality in common with heterogeneous database systems. However, the Broker goes
further than many existing systems, in that it allows for the addition or removal of in-
formation sources at runtime. This can include sources of which the Broker has no prior
knowledge.

To permit this dynamism in the participation of available information sources, the Broker
makes use of capabilities provided by the OAA. When an information source agent comes
online, it registers its presence with the Broker by calling one of the Broker’s agent interface
procedures, broker_register_source. As one of the arguments to this procedure, the source
agent passes to the Broker a set of schema mapping rules, which contain the knowledge that

“The prototype system does not currently include knowledge base or multimedia sources.
SFor this reason, we use the term predicate, where some readers with a database background might prefer

relation. In most places in this paper, these two terms can be used interchangeably.

is needed by the Broker to translate between the broker schema and the source schema.®

This approach to schema mapping means that the Broker need have no prior knowledge of
the schema of any of the participating information sources. What s required is that the
developer of the source agent be aware of the Broker’s schema, which, as mentioned earlier,
has been fixed and “published”. Thus, to allow for the dynamic participation of sources, an
important part of the Broker’s knowledge originates with the sources, each of which provides
the mapping rules for its schema.

At the same time, because the schema mapping rules are used at the Broker, rather than
at the source agent, it is possible to bring a source online with minimal changes to the
original data or to the original capabilities of the source. This may be done by creating an
agent wrapper around the original source component — an approach that is supported by
the underlying OAA libraries and development tools.

Source agents that need to go offline may do so in an orderly fashion by calling another of
the Broker’s agent interface procedures, broker_unregister_source, to inform the Broker that
the source is no longer available. However, it is also important to allow for sources that may
die or become unavailable unexpectedly. Here again, the Broker uses mechanisms provided
by the OAA Facilitator. To do this, the Broker installs a trigger on the Facilitator, for each
source agent, which is set to fire whenever that source agent dies or becomes unavailable for
any reason. The effect of the trigger is to send a notification message to the Broker, so that
it can unregister the source and retract its schema mapping rules.

5.1 Domain Specialization

A Broker agent may be specialized for a given domain, by incorporating domain knowledge.
To illustrate, our prototype Broker agent is specialized with basic knowledge relevant to
travel, such as distances between major cities — data that is not likely to be included in
any of the participating sources, but that is very likely to be useful in conjunction with
the sources’ data. Questions about this domain knowledge can then be included in queries
submitted to the Broker. For example, using the direct-query hotel interface, it is possible to
ask about hotels that are in a given city C, or in nearby cities (cities within a certain distance
from C). By filling in knowledge gaps in this way, it is possible for the Broker to provide a
retrieval capability that is greater than the sum of the individual information sources.

Procedures for converting and normalizing units represent another type of domain knowledge
that is useful in a Broker. For example, in the travel domain, our prototype Broker provides
procedures for converting and normalizing units of currency and the formatting of addresses,
which vary widely from country to country. These procedures can be used in schema mapping
rules, to ensure that results are returned in units and formats that are appropriate for the
current user. This alleviates the need for each information source to provide these conversions

6These and other communications between the Broker and the source agents are handled through the ser-
vices of the OAA Facilitator. We illustrate this, in Figure 1, by showing the Facilitator partially surrounding
the Broker.

and normalizations, and thus makes it easier to prepare information sources to work with
the Broker.

5.2 Schema Mapping Rules

Delegation and translation of queries by the Broker are determined by schema mapping rules,
which are provided at runtime by each information source that connects to the Broker.

There are several types of schema mapping rules, the most important of which is the broker
predicate rule. A broker predicate rule, which provides a partial definition of some predicate
in the broker schema, has the syntax of a Prolog rule, and essentially the same semantics.
Each mapping rule takes the form

B(X) « S1(Z1),...,5.(Z,)

where

1. B(X) is a predicate in the broker schema.

2. Each of S1,...,5, may be taken from any of the following sets:

e predicates in the source schema (i.e., the source providing the rule)
e broker domain predicates
e ICL (Interagent Communication Language) built-in predicates, including

— standard comparison operators such as < /2, < /2, > /2, and > /2
— a small set of utility predicates such as member /2 and append/2

3. Asin an ordinary Prolog clause, each element of the argument lists X, Z1, ..., Z,, may
be a variable or an instantiated value.

Broker domain predicates provide domain-specific knowledge, and most are purely
extensional. For example, in the travel domain of the prototype system,
city_distance(Cityl, City2, Miles) provides a table of distances between given cities.

An information source may be associated with multiple rules defining the same broker pred-
icate, and multiple sources can define the same broker predicate.

Although the body of the broker predicate rule is characterized as a conjunction of predicates,
it should be noted that in practice, these rules, like ordinary Prolog rules, are not strictly
limited to conjunction. Disjunction, negation (that is, Prolog-style negation as failure), and a
few other control operators are also allowed, but for any rule body containing these, standard
equivalences of logic may be used to find an equivalent set of conjunctive rules.

10

5.3 Query Processing

The Broker’s strategy in handling a query is to provide all possible answers, given its current,
schema mapping rules. It does this in such a way as to maintain Prolog semantics in
performing query evaluation, and incorporates several straightforward optimizations that
are important, considering the distributed nature of the information sources.

Of these optimizations, the most important is called chunking. The goal of chunking is
simply to identify the largest subqueries that can be sent to an information source (after
translation, as explained below) without changing the meaning of the original query. A
chunk may contain broker predicates that are known to be satisfiable by the source, and ICL
built-in predicates, but not broker domain predicates.

Chunking has three advantages. First, it requires that fewer communications occur be-
tween the Broker and an information source, reducing the overhead required to establish
and complete communications. Second, it allows the information source to make better use
of whatever optimization capabilities it may provide. Finally, it can significantly reduce
the amount of data returned from a source, by allowing joins and other operations to be
performed at the source, rather than at the Broker.

When the Broker receives a query, it takes the following steps to produce a query erecution
plan:

e Determine, for each predicate in the query that is not an ICL built-in, what set of
sources provides solutions for that predicate.

— If the predicate is a broker predicate, this is done by testing for unification of the
predicate against the heads of the broker predicate rules. If it unifies with the
heads of one or more of the rules associated with a given source, that source is
placed in the set of sources for the predicate.

— If the predicate is a broker domain predicate, then the Broker itself is regarded
as the sole source of solutions.

e Determine which are the largest subqueries that can be treated as chunks, and which
sources can handle each chunk. In this process, as an optimization, ICL built-in pred-
icates (including arithmetic comparisons) are included with chunks to be solved by
sources, wherever possible, rather than being solved by the Broker itself.

e For each chunk, rewrite it as a disjunction of translated subqueries, where each disjunct
is the translation of the subquery for one of the sources that can handle that chunk.
The translation of a chunk for a given source is obtained by substituting, for each
broker predicate in the chunk, the disjunction of the bodies of the broker predicate
rules, for that source, whose heads unify with the predicate.

In the resulting query execution plan, each translated subquery is labeled with the name
of the source by which it is to be solved. The plan is then interpreted according to Pro-

11

log semantics, except that each translated subquery is solved remotely, by the appropriate
information source.

5.4 Persistent Queries

An extremely useful service provided by the Broker agent is the persistent query. A persistent
query is one that the Broker initially answers in the normal way, but then remembers and
monitors against changes in the available information sources. When an information source
is added, removed, or updated, the Broker checks the persistent queries to see if their results
may have been affected by the change.

As mentioned in section 5, the Broker detects additions of sources by calls made to bro-
ker_register_source, and removals by calls to broker_unregister_source, or by the firing of a
trigger installed on the Facilitator. Updates of sources are brought to the Broker’s atten-
tion, with an indication of the source predicates involved, by means of triggers installed on
the sources. In each of these cases, the Broker performs a straightforward analysis of each
persistent query, using the schema mapping rules for the source in question, to determine if
it may have been affected.

If so, the Broker sends a change notification to the user or agent that submitted the persistent
query. For example, in the case of our direct-query interface, the result of a persistent query
change notification is an email message to the user who entered the query. The email message
informs the user that the relevant data has changed, reconstructs the user’s query input, and
allows him to resubmit his query with a single button push, so as to obtain the latest available
results for that query. (The interactive nature of the email message is achieved by using a
multipart MIME format for the message, and reading it using the mail handling component
of a Web browser.)

The TPA deals with persistent query change notifications in a more comprehensive fashion,
as explained in section 7.

5.5 Queries Expressed in a Source Schema

The Broker also provides the capability of answering queries that are expressed in the schema
of an information source, rather than in the broker schema. This capability can have great
value in systems where one or more information sources are provided by legacy databases.

The need for this capability arises when a legacy database provides a well-developed user
interface to which users are accustomed, and it is desirable to retain that interface, while at
the same time integrating the legacy database with the Broker’s services. In this case, the
goal is for the user to formulate a query using the legacy interface (which generates queries
in the source schema of the legacy database), but to have that query answered by all the
Broker’s information sources, with the results returned to the legacy interface. This is made
possible, with a minimum of new engineering effort, by arranging for the Broker to handle

12

queries in that source schema.

In this situation, the legacy database becomes one of the Broker’s sources, and participates
along with other sources in answering queries submitted to the Broker in the broker schema.
But in addition, this legacy source may also act as an information requestor, submitting
queries that are formulated in terms of its source schema. (A syntactic translation may be
needed to place the query in ICL syntax, but in most cases, this is relatively straightforward
to implement.) To make this possible, the legacy source must first submit, to the Broker,
a collection of source predicate rules, which contain the knowledge needed by the Broker to
translate queries from the source schema into the broker schema. These rules are similar to
broker predicate rules, except that their heads are predicates from the source schema, and
their bodies are compositions of predicates from the broker schema.

When a query expressed in a source schema is submitted, the Broker uses the source predicate
rules to translate it into a query in the broker schema, and then solves that query in its
usual way, with respect to all sources other than the legacy source. These results are then
translated into the schema of the legacy source. The legacy source is not included in the
Broker’s normal mediation algorithms. Rather, the Broker submits the original query back
to the legacy source just as it was. Finally, the Broker integrates all the responses and
returns them to the source.

6 Source Agents

An information source agent that works with a Broker agent may be of several different
types. The primary requirements are first, that it be able to handle the Prolog-style query
syntax that the Broker generates, and second, that it be able to characterize its contents in
terms of schema mapping rules. The first requirement is not a very restrictive one, as it is
considered straightforward to translate from a Prolog-style syntax to SQL or other relational
query languages. The second requirement means, roughly, that a source can be presented in
terms of a relational model. (Although it should be possible to accommodate some sources
that are inherently object-oriented or knowledge-based, this support has been left for future
work.)

In meeting the second requirement, one must consider the origin and access mechanisms of
the source’s data, which can vary widely between information sources. For instance, some
may be traditional relational databases, whereas others may contain data extracted from
the Web. In the case of Web data, several types of data sources may be identified for our
purposes. First, there are fully structured sources — relational databases that are accessible
via a completely general query language, such as SQL. These are relatively uncommon at
present. Second, there are semistructured sources. As mentioned in the Introduction, these
may be either semiqueryable (accessible via a form-based query page), semistructured textual,
or some combination of the two. semistructured textual sources are Web sites that include
large collections of pages, each having enough structure, in HTML markups, headings, and /or
other textual clues, to allow for extraction of a set of data elements.

13

In addition to traditional relational databases, implemented as Prolog databases, the proto-
type system makes use of several semistructured textual Web sources. To extract the data
from the relevant pages, parsing techniques, based on context-free grammars, are used. A
library of reusable code has been developed in support of these techniques.

6.1 Caching and Retrieval Strategies

As mentioned earlier, Web-based sources introduce challenges for data retrieval. Foremost
among these are long access times (especially relevant to semistructured sources) and low
reliability. In the Information Broker system, these are addressed through a combination of
caching and flexible retrieval strategies.

6.2 Caching

Caching is accomplished both by batch update procedures and by update procedures that
result from individual queries. A batch update procedure is one that runs offline (that is,
independently of the source’s activities in response to queries), and regenerates a complete
cache. For a semistructured data source, a batch update could involve accessing hundreds
or thousands of pages and parsing each one for relevant data, so this could easily take hours.
Each of the Web-based information sources has been initialized in this way, and is set up so
that query processing can continue normally by one agent, while a batch update is performed
by a separate agent.

Cache updates can also be triggered by normal query processing. Whenever a query is
satisfied (or partially satisfied) with data retrieved directly from the Web, this data is used
to update the cache.

6.3 Retrieval Strategies

Flexible retrieval strategies are used to determine whether a query is satisfied entirely from
a cache, directly from the Web at query time, or from a combination of the two. A request
that comes in to the Broker can include, in addition to the query itself, a specification
of a retrieval strategy, which will be propagated to each source agent that is employed in
answering the query.

Data records in a cache are time-stamped, and some strategies are implemented in relation
to these time stamps. In addition, a source agent can specify a default longevity for each
predicate that it caches. For example, since room rates are relatively stable for hotels in
our Web sources, the longevity for the relevant predicates is specified as two weeks. For
the agent that provides current monetary exchange rates, however, longevities are set at 24
hours.

14

Currently, four retrieval strategies are supported. All-from-web calls for retrieval of all data
from the Web, at query time, regardless of how long it might take. All-from-cache calls for
retrieval exclusively from the cache. From-web-if-expired means that for each data element
that is accessed in answering the query, its time-stamp is checked, and if it is older than
the default longevity for that predicate, then the element is updated from the Web. From-
web-if-older-than(N) is similar, except that the longevity is specified (as N seconds) for that
particular query.

Consistent implementation of caching and retrieval strategies by the various source agents
is supported by a library of reuseable code.

7 The Travel Planner Agent

Even though a Broker provides a general, transparent means of accessing multiple data
sources with a single query, there is still much that can be done to assist the user in making
good use of the information provided by the Broker. A variety of service-providing com-
ponents can be envisioned, which access the Broker on behalf of the user, thus insulating
her from the details of query construction altogether. The instantiation of the Broker as
a software agent helps to make this possible, because the Broker’s services are thus made
readily available to a wide variety of agents that come online.

The Travel Planner Agent provides an example of a high-level service-providing agent that
insulates the user from formulating Broker queries. TPA’s function is to formulate a list
of possible itineraries for a trip, given a few basic trip constraints that are supplied by a
user. These trip constraints include such things as dates of departure and return, destination
city, and overall budget. Each itinerary prepared by TPA includes complete details about a
possible choice of flights and hotel stays for the trip, and itineraries are scored and ranked
according to user preferences.

To evaluate alternative itineraries, TPA maintains a user model indicating the user’s prefer-
ences about a variety of travel parameters. For example, with respect to air travel selections,
these parameters include such things as airline, class of travel, alternative airports, and time
of day for departure. The presence of the user model also allows TPA to minimize the
amount of new information required from the user when formulating an information request.

To minimize the user’s effort in maintaining the user model, TPA has the capability of
questioning the user about her experiences after a trip has been completed. Once a trip
has been scheduled, TPA remembers the return date. Shortly after that date, using services
provided by other OAA agents, TPA will send a questionnaire to the user by email, asking
that she provide ratings for some of the parameters of the trip, such as a specific hotel or
hotel chain. If a trip parameter has previously been rated by the user, she will be given an
opportunity to update the rating; otherwise, she will be prompted to select a new rating.”
The questionnaire is presented as an HTML form, and a “Submit” button causes the user’s

"For most parameters, ratings are integers between -5 and +5.

15

responses to be returned to TPA, for incorporation into the user model.®

TPA also provides a persistent query service, based upon that provided by the Broker. When
it receives a persistent query change notification from the Broker, the TPA determines what
set of itineraries was based on that query, automatically resubmits the queries relevant to
those itineraries, obtains the new results, and recomputes the requested itineraries based on
these results. It compares these itineraries to the results of the original request, which it has
saved, to determine whether the resulting itineraries have been affected in any way. If so, it
sends the new itineraries to the end user by email.

Note that TPA’s persistent query service is more comprehensive than that of the Broker, in
that compares its newly generated itineraries against the previous ones, before generating a
user notification. By contrast, when the Broker provides a persistent query change notifica-
tion, it is based on advice from one of the Broker’s sources that its data has changed in some
way, and indicates that the query results may have been affected by the change. That is,
the Broker does not determine with certainty whether the query results have been affected,
but it gives the requesting user or agent the opportunity to make that determination. The
reason for this difference is that the Broker is intended to handle large numbers of queries
from (potentially) a large number of agents. Thus, it is not reasonable to expect the Broker
to save the results of all queries handled.

8 Future Directions

Although it has not yet been exploited, our architecture allows for cooperation between
multiple broker agents. This can be done by having one broker register as an information
source with respect to another, and present mapping rules that allow its broker schema to
be regarded as a source schema. These relationships between brokers could be organized
around the structure of the relevant domains. For example, whereas our Broker directly
uses sources in the subdomains of air travel and accommodations, among others, it would
be natural to have these two subdomains handled by independent brokers.

The storage and use of broker predicate rules at the Broker, rather than at the individual
sources, raises an opportunity for further simplifying the introduction of new information
sources. Currently, each source has to be given the ability to process the ICL query syntax.
Although this is easy when working with an implementation language for which the agent
library is available, it could be a significant obstacle in other contexts. As a substitute, if
a source agent exists without this ability, it would be possible for the Broker to perform
the interpretation of the query syntax on behalf of that agent, in such a way that the agent
need only respond to atomic requests (that is, where each request consists only of a single
predicate). On the other hand, for those source agents which do handle the ICL syntax,
but do not possess the ability to perform any optimizations, the Broker could provide more
sophisticated optimizations of the compound requests that go to those agents.

8 As of this writing, the implementation of the questionnaire capability is incomplete.

16

More can be done, in the Broker, to ensure effective utilization of information sources.
Currently, the use of a source in answering a subquery is determined by unification of the
subquery predicates against the heads of broker predicate rules. Although this provides
a useful degree of discrimination of sources, greater discrimination could be achieved by
attaching additional characterizations of source contents. For example, it should be possible
to specify that a source selection depends on an argument of a subquery predicate being a
member of some fixed set of values, or within a certain range, if numeric. In addition, rules
could be annotated with an approximate indication of what portion of the available data the
source can provide, if known. This would allow the Broker, in some cases, to avoid sending
requests to two or more sources that are likely to return the same data.

Finally, we would like the Broker to provide estimates of retrieval times to interested re-
questors. That is, it should be possible for a requestor to find out how long the wait might
be for the results to a a given query, with a given retrieval strategy. This would assist the
requestor in selecting a retrieval strategy, and, assuming the requestor is a software agent,
would allow it to manage its interactions with users more effectively.

9 Related Work

The growth of the Web has contributed to a renewal of interest in the problem of providing a
uniform interface to multiple information sources, which has received considerable attention
recently in both the AI and Database literature. Within this body of work, the Information
Broker project is characterized by its emphasis on the following: dynamic availability of
sources, supported by modular sets of schema mapping rules; ease of bringing new and
legacy information sources online; transparent access to semistructured sources, supported by
caching and retrieval strategies; and thorough integration with an existing agent framework.

In the database community, several systems are being built around the notion of a mediator,
including CARNOT [4], TSIMMIS [2], and HERMES [14]. Broadly speaking, for each of
a chosen set of queries, these systems provide a procedure to answer the query using the
available sources. Given a new query, these systems attempt to answer it by relating it to the
set of known queries. In the Information Broker, sources are described independently of the
queries for which they will be used, which is less restrictive as to which queries are answerable,
and also makes it easier to add or remove sources. TSIMMIS has also given attention to the
use of semistructured sources, with an approach based on yacc-style recognition grammars.

The Information Manifold [8] shares our emphasis on dynamic addition and removal of
sources. It too employs modular sets of source description rules, but relies on a different
form of rule, where source schema predicates are characterized in terms of broker predicates
(whereas, in the Information Broker, broker predicates are defined in terms of source predi-
cates). There are interesting tradeoffs between the two approaches. In particular, although
Information Manifold characterizations provide the broker with more information regarding
the contents of each source, and thus allow for greater optimization in the selection of the
sources that are relevant to a query, their use is computationally expensive, and the form of

17

the rules must be more tightly restricted.

In the AI community, systems such as SIMS [1] and InfoMaster [6] are also based on explicit
representations of the contents of information sources. In SIMS, these are based on mappings
of source schemas to classes and attributes specified in the description logic language LOOM,
and planning technology is used to generate query plans appropriate for the sources. SIMS’
transformation rules, which guide the planning process, do not guarantee that a query-
answering plan will be found if one exists. In addition, defining mappings using arbitrary
logic rules, as in the Information Broker, provides greater flexibility than in SIMS. In the
RETSINA (Reusable Task Structure-based Intelligent Network Agents) architecture [15],
information agents play a role similar to that of our Broker agents, and use KQML in much
the same way that our agents use ICL. In InfoSleuth [7], which employs KQML and KIF
for communications, this role is implemented jointly by an Execution Agent and a Broker
Agent.

10 Summary

Structured and semistructured information sources will be increasingly important as we learn
to use the Internet and intranets in more sophisticated ways. Transparently coordinated
access to heterogeneous, rapidly changing collections of these sources is a prerequisite for the
evolution of many types of software agents.

We have described an approach and a prototype system that provide this access, within the
context of an agent framework, the Open Agent Architecture. Information consumers and
providers are instantiated as agents, and interact through the services of a Broker agent,
which include mediation, dynamic addition and deletion of sources, and persistent queries.
Provider agents present a variety of information sources as queryable databases, hiding details
of access and storage, and provide caching and flexible retrieval strategies.

Our approach to information brokering fits naturally into the agent paradigm, and benefits
from the autonomy it allows for individual providers and consumers, and the flexibility of
interactions between them. In addition, the agents are able to take advantage of specific
capabilities provided by the agent framework, including communication and coordination
mechanisms, the Interagent Communication Language, triggers, and support provided for
creating wrappers around legacy applications implemented in a variety of languages.

References

[1] Yigal Arens, Chin Y. Chee, Chun-Nan Hsu, and Craig A. Knoblock. Retrieving and
integrating data from multiple information sources. International Journal on Intelligent
and Cooperative Information Systems, 2(2):127-158, 1993.

18

[2] Sudarshan Chawathe, Hector Garcia-Molina, Joachim Hammer, Kelly Ireland, Yannis
Papakonstantinou, Jeffrey Ullman, , and Jennifer Widom. The TSIMMIS project: In-
tegration of heterogeneous information sources. In Proceedings of the IPSJ Conference,
Tokyo, Japan, October 1994.

[3] P.R. Cohen, A. Cheyer, M. Wang, and S. C. Baeg. An open agent architecture. In O. Et-
zioni, editor, Proceedings of the AAAI Spring Symposium Series on Software Agents,
pages 1-8, Menlo Park, California, March 1994. American Association for Artificial
Intelligence.

[4] C. Collet, M. N. Huhns, and W Shen. Resource integration using a large knowledge
base in CARNOT. IEEE Computer, 55(62), 1991.

[6] Hector Garcia-Molina, Dallan Quass, Yannis Papakonstantinou, Anand Rajaraman,
Yehoshua Sagiv, Jeffrey D. Ullman, and Jennifer Widom. The TSIMMIS approach
to mediation: Data models and languages. In Proceedings of the Second International
Workshop on Next Generation Information Technologies and Systems (NGITS ’95),
Naharia, Israel, June 1995.

[6] Infomaster home page. Available via World Wide Web URL
http://infomaster.stanford.edu/.

[7] Infosleuth project index. Available via World Wide Web URL
http://www.mcc.com/projects/infosleuth/.

[8] Thomas Kirk, Alon Y. Levy, Yehoshua Sagiv, and Divesh Srivastava. The information
manifold. In Proceedings of the AAAI Spring Symposium on Information Gathering in
Distributed Heterogeneous Environments, Stanford, California, March 1995.

[9] David L. Martin, Adam Cheyer, and Gowang-Lo Lee. Agent development tools for the
open agent architecture. In Proceedings of the First International Conference on the
Practical Application of Intelligent Agents and Multi-Agent Technology, pages 387404,
Blackpool, Lancashire, UK, April 1996. The Practical Application Company Ltd.

[10] Douglas B. Moran, Adam J. Cheyer, Luc E. Julia, and David L. Martin. The open agent
architecture and its multimodal user interface. In Proceedings of the 1997 International
Conference on Intelligent User Interfaces (IUI197), Orlando, Florida, 6-9 January 1997.

[11] Alexandros Moukas. Amalthaea: Information discovery and filtering using a multiagent
evolving ecosystem. In Proceedings of the First International Conference on the Practical
Application of Intelligent Agents and Multi-Agent Technology, pages 421-436, Blackpool,
Lancashire, UK, April 1996. The Practical Application Company Ltd.

[12] Xiaolei Qian. Semantic interoperation via intelligent mediation. Final Report CDRL
A009, Computer Science Laboratory, SRI International, Menlo Park, California, 1996.
Unpublished project report.

19

[13] Michael Stonebraker, Paul M. Aoki, Avi Pfeffer, Adam Sah, Jeff Sidell, Carl Staelin,
and Andrew Yu. Mariposa: A wide-area distributed database system. Sequoia 2000
Technical Report 95/63, University of California, Berkeley, CA, June 1995. Appeared
in VLDB Journal 5, 1 (January 1996), pp. 48 — 63.

[14] V.S. Subrahmanian, S. Adali, A. Brink, R. Emery, J. Lu, A. Rajput, T. Rogers, R. Ross,
and C. Ward. HERMES: A heterogeneous reasoning and mediator system. Technical
report, University of Maryland, 1995.

[15] K. Sycara, K. Decker, A. Pannu, M. Williamson, and D. Zeng. Distributed intelligent
agents. In IEEE Ezpert, December 1996.

20

