
Explaining and 
Recovering from 
Computer Break-ins 

 

DERBI:  Diagnosis, Explanation, 
and Recovery from 
Computer Break-Ins. 



 

Table of Contents 

 

INTRODUCTION 2 

DERBI – A Different Kind of Intrusion Detection System 2 

Comparison to Virus Detection Software 2 

DERBI OBJECTIVES 3 

Assistance after a Break-In 3 

No Prior Set-up Required 4 

Explanation and Guidance for Recovery 4 

How Effective is After-the-Fact Intrusion Detection? 4 

DERBI USAGE 5 

Direct Installation on Suspect System 5 

Inspection of Suspect System from a Trusted System 5 

Analysis by a Portable DERBI Machine 5 

Inspection of System Snapshot 6 

DERBI STRUCTURE 7 

Head-Body-Feet 7 

Head 7 

Feet 11 

DATA COLLECTION 13 

Obvious Data 13 

Explaining and Recovery from Computer Break-ins  i 



 

Subtle Data 13 

Obscure Data 14 

EVALUATION 15 

Lincoln Labs IDE 15 

1998 IDE 16 

1999 IDE 16 

Benefits of Evaluation 18 

PORTING TO NEW ENVIRONMENTS 18 

Linux Port 18 

Complex Sites 19 

SUMMARY 19 

Weaknesses 19 

Strengths 20 

Future 20 

Summary 21 

Explaining and Recovery from Computer Break-ins  ii 



 

Explaining and Recovery from 
Computer Break-ins 

DERBI:   Diagnosis, Explanation, 
and Recovery from 
Computer Break-Ins 

Introduction 

DERBI is a coordinated collection of programs that assist in ex post facto 
detection of unauthorized access and use (intrusions) of Unix computers.   
Its difference from traditional intrusion detection systems (IDSs) allows it to 
fulfill a need they don’t address.  In particular, DERBI can be used in 
situations where an IDS wasn’t in use at the time of a suspected intrusion. 
 
DERBI was designed based on long experience with Unix systems and with 
experience in tracking intrusions in these systems. Briefly, it works by closely 
examining the system’s logs and state.  For instance, DERBI notes a problem 
if a user was not logged in when his mail file was last read.  Just as a police 
forensic analyst might notice latent information not easily visible, DERBI’s 
forensic analysis looks closely for clues throughout the system. 
 
The DERBI project was sponsored by the Defense Advanced Research Projects 
Agency (DARPA/ITO) from 1996 to 1999.  Dr. Doug Moran was the original 
Principal Investigator and is responsible for much of the original design and 
initial implementation of DERBI.  Dr. Mabry Tyson became Principal 
Investigator in 1998 and continued the project after Dr. Moran left for a 
start-up. 

DERBI participated in the 1998 and 1999 Lincoln Laboratory Intrusion 
Detection Evaluations (IDE). Although these evaluations were designed for 
more traditional ID systems which used monitoring data, the test 
administrators provided file system data for DERBI.  Overall, DERBI did quite 
well in detecting attacks in the Evaluations.  Some evaluators were 
impressed that DERBI was able to detect as much as it did. 

DERBI – A Different Kind of Intrusion Detection System 
Protecting the integrity of computer systems is a critical and ongoing 
requirement of system administration.   This task is complex and requires a 
variety of tools.  In the past decade, the field of intrusion detection has been 
the focus of much interest and research.  
 

Explaining and Recovery from Computer Break-ins  ii 

Mabry Tyson
Fill this info in.



 

Much of that research has been directed towards active monitoring of 
systems and networks to detect ongoing intrusions.  If intrusions can be 
detected and stopped in their nascent stages, the integrity of systems can be 
assured.   However, while this is a critical capability, it is not the only answer 
to everyone’s needs.   
 
DERBI is a different kind of intrusion detection system.  Rather than 
instrumenting a system to detect intrusions in real-time, DERBI is designed to 
analyze a computer’s file systems after-the-fact to see if there is evidence of 
an intrusion.   Obviously DERBI is not intended to supplant a real-time IDS as 
it is better to stop an intrusion before it happens.  However, in a well-
protected site, DERBI could be used in conjunction with a traditional IDS.  If 
an attack somehow avoids or neutralizes the IDS, DERBI may be able to 
detect information useful in determining whether there was an attack and 
what happened. 
 
In addition, DERBI was designed to be useful for those sites that do not use 
effective IDS systems.  In particular, DERBI would be useful for sites that do 
not have the resources or expertise to install, monitor, and maintain an IDS.   
The tool would be useful to the local system administrator (or user, in the 
case of individually maintained systems) if he becomes suspicious.  The tool 
could be run routinely or intermittently as fits the individual situation.  
Others, such as consultants or law enforcement officials could use the tool to 
help understand the state of the system. 

It should be noted that DERBI can not easily detect certain classes of attacks.  
For instance, some denial-of-service (DoS) attacks leave no direct evidence in 
the file system.  Indirect evidence, such as failure of mail delivery and other 
network activities, may indicate an event of some sort, but it would be 
impossible to determine whether the cause was a DoS attack or some 
hardware/network problem. 

Comparison to Virus Detection Software 
Computer users are very familiar with viruses, and any serious computer user 
probably protects his system from viruses.  Yet many computer users use no 
virus protection software.  Why?  Some of the reasons may include: 
 

• A lack of understanding the dangers of not being protected 
• A lack of knowledge of what needs to be done to protect a 

system  
• Procrastination 
• A belief that the cost of the protection is greater than the 

potential loss 
• A belief that the operation of the protection software 

interferes with the requirements for the system 

 
One could argue that all computer users should protect themselves from 
viruses, but the reality is that many do not.   It is usually a matter of mental 
economics – the user has other things he wishes to do and the effort of 
shopping for, acquiring, installing, and maintaining a virus protection 
program is too large a cost. 

Explaining and Recovery from Computer Break-ins  2 



 

 
 At least the cost seems too high until a virus hits.  The economics change 
when the user finds that his system or data may have been damaged.  The 
user will then scramble to fix his problem, probably by buying a virus 
protection/removal program.  After he gets over this crisis, he may continue 
to run the virus protection program for a while.  But as his operating system 
or applications evolve, he may find that his existing virus protection program 
is no longer adequate.   He very well may slip back into the same economics 
of effort that led him not to be protected in the first place.  The cycle 
repeats. 
 
System administrators, likewise, are familiar with danger of computer 
intrusions.  Again, the more professional system administrators have 
mechanisms in place to deter and detect attempts at penetration of their 
security mechanisms.  However, many lack anything more than minimal 
security, say passwords and a firewall of some sort, for exactly the same 
reasons as above.  If one considers the very many small sites at individuals 
homes, the number of unprotected sites is staggering.   Until IDS’s are part 
of every operating system, there will continue to be very many under-
protected systems. 
 
Unfortunately, many intrusions could be (and probably are) go undetected.  
But when they are detected, system administrators of unprotected sites, just 
as unprotected users do with viruses, will scramble to recover when they 
have suffered an intrusion.   The administrator may not realize his system 
has been attacked but instead just notice some anomalies.   A naïve 
administrator might just repair the anomalies, blaming some mysterious 
computer glitch, without realizing something more serious caused them.  If 
he manages to detect that some intruder has been messing with his system, 
he may not know how the intruder got in or how he might block them from 
getting in the same way.  He probably won’t be able to be certain that the 
intruder didn’t leave other ways of getting in again.  All he is left with is to 
try to recover from any damages.  
 
DERBI fills the niche for the situation when an unprotected system has 
been intruded.  It can be used (whether in response to an event or as a 
periodic maintenance routine) to determine if evidence of an intrusion exists.  
As part of DERBI’s inspection of the system, it checks whether the system 
contains known vulnerabilities. 

DERBI Objectives 

Assistance after a Break-In 
DERBI is intended to be an aid to a System Administrator (SysAdmin) after he 
suspects an intrusion may have occurred.  If a SysAdmin suspects an 
intrusion, he is probably under considerable pressure to analyze the 
situation, understand the compromises, losses, and other damages to the 
system, and to restore the system to a secure status where the intrusion 
won’t happen again. 

Explaining and Recovery from Computer Break-ins  3 



 

Under this kind of time pressure, a SysAdmin can’t easily update his skills to 
become a security expert.  He can’t spend too much time manually analyzing 
the system to try to determine what happened.  For a variety of reasons 
(including time and cost), he may be unable to hire security consultants to 
help him with his crisis.  What he would appreciate is a security consultant in 
a box that would analyze his system for him.  DERBI is one step along the 
road to this capability. 

No Prior Set-up Required 
In keeping with the concept of an IDS for unprepared sites, one of the 
desiderata in the design of DERBI was that DERBI should require nothing 
more than what is standard operating procedure for a particular operating 
system (OS).  That is, DERBI should be able to function with an OS installed 
just as the vendor delivered it.  DERBI can take advantage of other features 
that may have been added to the system (such as TCP Wrappers) but these 
are not required. 

Explanation and Guidance for Recovery 
To aid the SysAdmin, DERBI provides an explanation of the evidence it finds 
of an intrusion and related anomalous evidence in the system.  The 
SysAdmin may review this information and determine what course of action 
to follow.  Among the evidence presented are indications of known 
vulnerabilities that exist on the site. 

These reports might also be used for gathering data about attacks across a 
larger number of sites. 

How Effective is After-the-Fact Intrusion Detection? 
One of the objectives of the DERBI project was to see whether ex post facto 
intrusion detection could detect a wide variety of attacks.  After all, our only 
sensor is a post-mortem forensic analysis of the file system.  The cracker has 
full opportunity to clean this up but that is often limited to obliterating 
certain logging information. 

 The Intrusion Detection Evaluations indicate that DERBI is effective in the 
case that no active IDS was in place. 

One of the tenets of our system is that if an intruder gets into a system, he is 
likely to poke around in the system.  Perhaps he wants to find alternative 
vulnerabilities; perhaps he wants to install a Trojan horse or data collection 
program (sniffer); or perhaps he is modifying or looking at files.  We feel that 
a strength of DERBI is that even if he uses some new exploit, we will detect 
his subsequent activity.  Almost by definition, this subsequent activity will 
modify the file system and therefore may be available to our sensor.  
Attempts of a cracker to camouflage his existence may actually reveal his 
presence as he keeps modifying the file system (by accessing files). 

Explaining and Recovery from Computer Break-ins  4 



 

DERBI Usage 

DERBI could be deployed in any of several modes to analyze a suspect 
system. 

Direct Installation on Suspect System 
DERBI could be installed directly on a suspect system, using its CPU for 
executing DERBI.  This has the advantage that DERBI has full access to the 
local environment (users, mount points, time of day, etc.).   For a small site, 
this may be the only available option. 

However, this deployment is not advisable as the execution of DERBI is 
dependent upon the suspect system.  An intruder could manipulate the 
system to cause DERBI to fail to notice anomalies. 

This may be the preferred configuration for periodic runs of DERBI, searching 
for unnoticed intrusions.   

 

Ultra

DERBI
 

Inspection of Suspect System from a Trusted System 
DERBI could be installed on a trusted system in the same site as the suspect 
system.  This has the advantage that the operation of DERBI is secure.  Some 
of the environment is probably shared by the two systems, but DERBI must 
be capable of recognizing the differences in the environment between the 
suspect and trusted systems.  The trusted machine must have privileges to 
access all the data on the suspect machine. 

This configuration is preferred over the execution of DERBI on the suspect 
machine. 

Ultra Ultra

DERBI
 

Analysis by a Portable DERBI Machine 
A portable computer (perhaps belonging to a security consultant) running 
DERBI could be attached to the file systems of a suspect system.  The file 

Explaining and Recovery from Computer Break-ins  5 



 

systems would be available as data to the DERBI system.  DERBI needs to 
understand more of the system, such as mount points, users, and user 
directories. 

In this configuration, the suspect machine is taken down and the disks 
mounted instead to the portable machine.  This assumes that hardware 
issues are not too much a problem. 

DERBI

Ultra

 

Inspection of System Snapshot 
The preferred use of DERBI on a suspect system involves taking a snapshot 
(backup) of the file system by ufsdump and creating a new file system 
containing a copy of that snapshot.  This data can then be analyzed without 
fear of corrupting the data any further.  Any repair or recovery of the suspect 
system can be carried out in parallel. 

Taking a full dump of the file systems may be time consuming.  However, if 
civil or criminal prosecution of an intruder is a possibility, the collection of a 
system snapshot may be necessary to establish the state of the machine, log 
files, or other evidence.   

If there is a regularly scheduled backup of the system, these backups, plus a 
newly-run incremental backup, can replace the full snapshot.  Note that an 
intruder can modify files so that a newly modified file may appear to be old 
and so not making it to this incremental backup.  This is a risk that must be 
weighed against the cost of taking a full snapshot. 

If for some reason an intrusion isn’t noticed for quite some time, then a 
regular backup soon after the intrusion may reveal details that have been 
trampled over in the intervening time.  DERBI could analyze the state of the 
system at the time of that backup. 

For the IDE, we provided a routine that gathered much of the data DERBI 
needed from the file system without the need to collect the contents of all 
the files.  While this worked for the most part, there was some data we failed 
to collect which could have resulted in improved performance.  (In a real 
intrusion situation, you can’t predict ahead of time what files might contain 
intruder data or programs, so it is better to get dumps.) 

Explaining and Recovery from Computer Break-ins  6 



 

For DERBI, we modified the restore program for Solaris, ufsrestore, to 
accurately restore the creation time on files and all the times on directories.  
The standard ufsrestore does not attempt to set these properly.  In order 
to use this deployment, these times need to be set as they were on the 
original file system.   An alternative approach would be to retrieve the 
information directly from the backup media without doing a restoration. 

Ultra

U ltra

DERBI
 

 

DERBI Structure 

Head-Body-Feet 
DERBI can be thought of as one body with three main parts.  The multiple 
“feet” do the walking over the (possibly remote) file systems collecting data; 
the “head” does the analysis; the “body” ties the two together.  The head 
directs what data should be gathered or checked.  The body translates that 
into commands to the various feet routines.  The feet routines gather the 
data and report it back to the body.  The body then formats the data in an 
appropriate fashion to respond to the query from the head. 

The feet gather the evidence which the head then analyzes and determines 
the belief of various attacks.  The feet portions of the system are designed to 
run on remote machines and are typically coded in PERL or C.  The body 
directs the feet and annotates the results to indicate what machine reported 
the results.  It is also responsible for canonicalizing such information (e.g., 
for time differences, for mount point differences, etc). 

Head 
The “brain” behind the head is PRS (Procedural Reasoning System).  Its 
knowledge consists of a collection of evidence schema along with a 
networked representation of how these bits of potential evidence lead to 
more general attack patterns.  Each of the evidence schemas indicates a kind 
of evidence that may indicate a kind of attack and how likely the attack is 
based on this evidence.  Each of the evidence schemas is a stand-alone 
document.  A system may be updated for new attacks by the addition of new 
schema.   

Figure 1 shows an evidence schema for a buffer overflow attack on the eject 
command.  The FILE in question is /usr/bin/eject (or wherever soft links 

Explaining and Recovery from Computer Break-ins  7 



 

lead you to).  In determining the applicability of the EVIDENCE, the system 
first checks 1) Is the particular version of eject on the system is known to 
be vulnerable and 2) Was it last run (accessed, actually) during the timeframe 
of interest (window of opportunity, the time during which the intrusion is 
thought to have taken place).  Otherwise, the belief is set to 0 that this 
command was improperly used. 

If the executable was last accessed more recently than either of the devices 
that it is normally used for, then the belief that it was used in an attack is set 
to 40%.  

In this case, the system asserts (POSITs) into its knowledge database the fact 
that the intruder may have gotten a shell with root permissions at the time 
of the access. 

Finally, an explanation is generated for this bit of evidence that explains how 
a root shell may have been exploited at that time. 

Part of the operation of the head is to correlate all the evidence by time and 
to present them to the user.  A segment of an output from an evaluation is 
seen in Figure 2.  This time-oriented presentation of the evidence is very 
effective.  The operator can see the progression of events as an intruder 

1. tries to gain access to the system,  
2. gets access,  
3. prepares for gaining privileges,  
4. takes advantage of an exploit to get privileges,  
5. uses the privileges to gain access to (or create) files,  
6. and then finally exit the system. 

Explaining and Recovery from Computer Break-ins  8 



 

EVIDENCE-TYPE     (exploit ( setuid root) buffer-overflow)
UNIQUE- NAME      eject-1
EVALUATION- NAME  eject
PATHS             (follow-links '("/usr/bin/eject"))
EVIDENCE
( ((not (and ;; vu lne rable co mmand
             ( command-version-vulnerable-p DIR FILE)
             ;; used  in interv al o f interest
             ( window-of-opportunity ( TimeAccessed PATH))))
    0 0) ;; assign 0% probab ility to co mmand  be ing u sed
         ;; and  0% be lieve  tha t it wa s
  (( greater-than ( TimeAccessed PATH)
        ;; u se is later than exp ected effects
       ( max ( TimeModified "/ cdrom") ( TimeModified "/floppy")))
    40 100) ) ;; 40 % probab ility o f exploit,
             ;; no  change  in be lief abou t whe ther it was exp loited
POSIT
((posit ((TIME ( TimeAccessed PATH)))
         ( compromised-shell "root" TIME *unknown-time*)))
EXPLANATION
(explain-evidence
         (      ;; va riable dec larations
                PATH
                (TIME (print- unix-time ( TimeAccessed PATH)))
                (TIME2 (print- unix-time ( TimeModified "/ cdrom")))
                (TIME3 (print- unix-time ( TimeModified "/floppy")) ) )
         (TimeAccessed   PATH)  ;; Òas-ofÓ time
   "The command ~S is version vulnerable to a buffer overflow attack
                and appears to have been used at time ~A
                which is more recent than two associated files:
                 / cdrom (~A) and /floppy (~A)."
        PATH TIME TIME2 TIME3)

 

Figure 1:  Evidence Schema: EJECT Buffer Overflow 

One of the unusual situations in the evaluations was that not all of these 
elements were present.  In particular, often the exploit happened, but the 
intruder did nothing with it.  Certainly some intruders might act this way, but 
many would not.  It is this subsequent activity, not the exploit, that DERBI is 
most sensitive to. 

PRS can support arbitrary queries in the EVIDENCE field.  In particular, the 
system can ask for operator intervention.  It can ask for the operator for 
information (“Is it likely that user Doe would login from cracker.ru?”  “Did an 
operator access Doe’s mail files yesterday”).  PRS can also support asking 
the operator to execute code such as restoring a file from backup. 

Explaining and Recovery from Computer Break-ins  9 



 

 

+04:53:25 later
====================================
Time: 23-Jul- 1998  14:32:39 EDT (901218759)
Exploit: Suspicious-login (Suspicious-login)

Login for user " darleentÓ from host 194.7.248.153
-------------------------------------------------------------
+00:00:12 later
====================================
Time: 23-Jul- 1998  14:32:51 EDT (901218771)
Exploit: DOWNLOADING-EXPLOIT (UUDECODE-1)

"/usr/bin/uudecode" is often used by crackers and
rarely by users, and appears to have been used at
time 23-Jul-1998  14:32:51 EDT.
-------------------------------------------------------------
+00:00:23 later
====================================
Time: 23-Jul- 1998  14:33:14 EDT (901218794)
Exploit: EJECT (EJECT-1)

The command "/usr/bin/eject" is version
vulnerable to a buffer overflow attack and appears
to have been used at time
    23-Jul- 1998  14:33:14 EDT
which is more recent than two associated files:
/cdrom (12-Feb- 1998  15:42:46 EST)
and
/floppy (20-Jul- 1998  10:32:15 EDT).
Asserting belief/plausibility = (40 100)
------------------------------------------------------------
+12:10:32 later

 

Figure 2:  Sample Segment of Output 

 

These POSIT’ed data  from the schema are inputs to the analysis by the PRS 
system.  DERBI’s PRS knowledge base includes a graph representation of how 
these bits of information can be combined into evidence of a pattern of an 
attack.  DERBI is designed to detect the overall attack, not just exploits. 

Figure 3 is a portion of this graph representation for DERBI before any 
evidence is acquired.  The square shapes represent the posited information 
from the evidence schemas.  The yellow lines represent the flow of 
information from the evidence nodes to conclusions represented by ovals.  
Intermediate conclusions are collected into more general conclusions. 
Intermediate conclusions include rather specific aggregates such as Buffer 
Overflow, Clock Reset, SymLink attack, etc.  The most general conclusions 
are Root-Compromise, User Compromised, Camouflage, and Subsequent-
Activity.   

Explaining and Recovery from Computer Break-ins  10 



 

Disparate pieces of evidence can give weak evidence for several of the 
evidentiary trees.  The combination of these bits of evidence (by a Dempster-
Shafer method) can provide evidence of higher conclusions.  When the 
correlation of evidence provides a sufficiently high belief (loosely, 
probability), the system indicates the result by turning the green conclusions 
red. 

Any end-user is not expected to understand the PRS graph of evidence 
dependencies.  Instead, when DERBI reaches a conclusion, DERBI will give the 
user an explanation of how these bits of evidence are combined into an 
overall number indicating the belief in the top-level conclusions.  These 
explanations are in addition to the explanations of each of the individual 
pieces of evidence.  

The numeric beliefs in the evidence schema and in the PRS graph are rather 
arbitrary and based upon the developers’ experience.  We believe that the 
numbers are not critical and that the design will result in a system whose 
top-level beliefs will tend towards either 0% or 100%. 

Feet 
The data collection is done by DERBI’s feet.  DERBI initially does a sweep of 
the entire file system gathering the basic information about the files:  name, 
owner, protection, date of creation, date of modification, date of access, size 
and other information in the inode.  In particular, DERBI is very careful to 
collect the access times on files and directories before disturbing them. 

Other system information is also gathered and utilized, including system 
name, mount points, users and other information from /etc/passwd, 
groups, crontabs etc.  User dot files (for example, .cshrc and .history) 
are collected for examination.  System executables are checksummed to 
compare against tables of known good (or vulnerable) versions.  System log 
files are collected for analysis (see Figure 4:  Relations of Log Files for some 
of the log files used). 

Strictly speaking, the feet don’t include any of the processing of this data.  
However, what the capabilities programmed into the feet are aligned with the 
kind of data needed by the head.  Much of the information is processed to 
extract just the information we need.  For instance, a catalog of symbolic 
links is built in order to follow those more quickly when we need them. 

Explaining and Recovery from Computer Break-ins  11 



 

Reserved for an image o f PRS g raph

 

Figure 3:  PRS Graph of Evidence Relations 

Explaining and Recovery from Computer Break-ins  12 



 

 

Data Collection 

Obvious Data 
DERBI searches the suspect system for many clues at what happened when.  
In doing so, we don’t overlook the obvious.  If files exist bearing the names 
of known cracker programs, DERBI detects and reports these.  If root suid 
files exist outside known system directories, these are reported.  If empty or 
crackable passwords1 exist or improper protections exist on critical system 
files, the user is alerted and the system uses this as evidence that an 
intrusion may have occurred at any time.  

These are just a few of this class of data. Obviously not all of these are sure-
fire indications of an intrusion, but in aggregate, and if temporally near 
other events, these may indicate intrusions. 

Subtle Data 
DERBI also searches for more subtle data.  If a vulnerable and privileged suid 
program has been executed, there is some low level of belief that an 
intrusion may be related.  Even a program like automount which is often 
called by the system causes this alert.  If the last execution of a vulnerable 
program aligns with other suspicious events, it may provide evidence of the 
exploited vulnerability.  If it doesn’t align, the event is spurious and can be 
ignored. 

If the system detects that a program was accessed but evidence exists that it 
wasn’t run in a standard mode, the belief in an intrusion jumps significantly.  
For instance, if a vulnerable format was accessed, we presume it was run.  If 
neither the cdrom nor floppy device was executed, we are highly suspicious 
that the format vulnerability was exploited. 

We found it very useful to compare file access and modification/creation 
times against the times of activity of those users legitimately able to read or 
write those files.  A cracker may hide his actions from various monitoring 
systems (for instance, by installing a modified ps) but if he touches files of 
an idle user, he has left his calling card.  This is also sensitive to the case in 
which we see the system after system logs have been corrupted and there 
are a number of users that are legitimately on the system and accessing their 
own files, yet no record of their login occurs.  These two cases can usually be 
distinguished by other patterns of file accesses (such as access of dot-files 
such as .cshrc and other ordinary activity such as reading or sending mail 
or the creation of browser cache files during a login).  In either case, an 
intrusion has occurred; the only question is, what does the evidence indicate.  

                                               
1 The crack program is run by DERBI against the set of passwords to determine 
these. 

Explaining and Recovery from Computer Break-ins  13 



 

Confounding this kind of information is normal system activity. Normal 
system activity (not including operator activity) doesn’t access or create too 
many files owned by normal users.  A legitimate operator may be accessing 
users’ files as part of his duties.  However, the operator will have left a clear 
audit trail of his become root.   

Other examples of subtle data are the relationships between mail 
delivery/acceptance and the network.  In a normal system, the arrival of mail 
is somewhat like background radiation.   It is happening all the time but 
rather erratically.  If mail quits arriving, something strange is happening. 

We paid quite a bit of attention to file access/modification/creation times.  If 
a file was created but the directory wasn’t modified more recently, this was a 
sign of something slightly suspicious.  If system files had times that were on 
the minute boundary, this was slightly suspicious (cracker tools may not 
bother to allow him to set it to anything but the minute such as you see in a 
ls -l). 

User logins are tracked.  If a user logs in from a new host (for him) or a host 
that has become suspicious, a warning is issued.  Again, this is only weak 
evidence of an intrusion.  But, if this aligns with other bits of evidence, the 
event becomes more suspicious. 

Again, DERBI detects quite a few subtle pieces of evidence. 

Obscure Data 
As DERBI was developed, we found more rather obscure and idiosyncratic 
relationships to use.   

Log files often contained obvious data about exploits (for instance, 
messages about multiple failed logins).  By comparing the information in 
multiple log files (see Figure 4), we were able to view subtle data where an 
intruder might not properly cover all his trails.  But we also found obscure 
evidence of attempted telnet logins that never actually got logged (and so 
there was no reason to cover them up).  The data structures in the log files 
reflect the connection, but since no login succeeded, no log entry is ever 
reported. 

Other obscure data we found was that deleted file names remain almost 
intact for some time in directories.  Thus even if the attacker might delete 
his files, we may be able to recover some information about the files he 
used.  (The deleted names lose their first letter.) 

We found other obscure relationships in the ownership of the pseudo-devices 
and their modification times.  This seems to give an alternative way to 
determine, in some cases, who logged in to what pseudo-device and when 
they logged in.  When the system logs have been tampered with, this 
information was sometimes able to provide hints at what happened. 
Unfortunately, there were some cases in which the IDE data seemed 
anomalous so this gave us some unexpected problems.  We’re not sure 
whether this is a trait of the operating system or whether the IDE somehow 
accidentally corrupted this data (see the section on evaluation). 

Explaining and Recovery from Computer Break-ins  14 



 

Obscure data tends to be idiosyncratic and might only be valid on a 
particular version of an operating system. 

 

utmp

utmpx

wtmp

wtmpx

lastlog

syslog

messages

authlog sulog

File system

Shell Init Files
cronlog crontabs

 

Figure 4:  Relations of Log Files 

Evaluation 

Lincoln Labs IDE 
DERBI participated in the 1998 and 1999 Lincoln Laboratory Intrusion 
Detection Evaluations (IDE) (http://ideval.ll.mit.edu/).   These evaluations 
were sponsored by Defense Advanced Research Projects Agency (DARPA ITO) 
and Air Force Research Laboratory (AFRL/SNHS). 

The evaluation consisted of data sets of sensor (BSM data, audit data, sniffer 
data, etc. and file system dumps (1998) and DERBI-collections of file system 
data (1999)) covering several weeks of simulated normal system operation of 
a test site in which specific intrusions occurred.  The data sets were divided 
into training data and test data.  Training data was presented well in advance 
of the test to allow participants to understand the format of the data, the 
configuration of the test site, and the required format for results.  

These evaluations measure probability of detection and probability of false-
alarm for each system under test.  The actual results of the systems’ 
performances are not available for publication.  These are research systems 

Explaining and Recovery from Computer Break-ins  15 

http://ideval.ll.mit.edu/)


 

and the evaluation is also an initial foray into IDS evaluation.  However, we 
will discuss DERBI’s performance and how it related to the overall 
performance of the other systems. 

1998 IDE 
The IDE in 1998 was the first attempt at evaluating the performance of IDSs.  
DARPA had pursued evaluations in other research areas and desired to do 
the same for the computer security research area.  The task was daunting as 
the collection of data for these evaluations would be difficult.  The evaluation 
methodology was also a sensitive area. Six research groups participated in 
the offline evaluations in the fall of 1998.  

The design of the evaluation was clearly done with real-time IDS systems in 
mind.  Some kinds of attacks, such as DoS, are not what most system 
administrators would consider intrusions, and are not generally detectable in 
the file system.  A class of attacks was considered “stealthy” but the attempts 
at stealth were of no difference to DERBI.  DERBI’s requirement of a dump of 
the file system had apparently not been in the original plans.  We are 
grateful that the evaluators were flexible enough to accommodate DERBI. 

Overall, when compared to a commercial IDS keyword system, the research 
systems had vastly better results with better detection and fewer false 
alarms.  However, no commercial IDS vendor participated in these 
evaluations so it would be unfair to give absolute credence to that result. 

Each system was measured only against the kinds of attacks it had sensors 
that might detect the attack.  Thus a system, such as DERBI, that only ran on 
Solaris machines would not be held accountable for attacks against SunOS 
machines.  As a corollary, DERBI was only tested against a relatively few 
number of attacks. 

DERBI detected approximately 55% of the attacks (“Attack Scores”) with a 
false positive rate of less than one a day.  We detected about 67% of the 
known (“old”) attacks and 40% of the novel (“new”) attacks.  (These numbers 
for the evaluations should be considered as only rough indications of relative 
performance.  There is no evidence that these numbers would be appropriate 
for a fielded system.) 

DERBI’s performance was among the best of the 1998 participants.  Even 
so, we note that some of the attacks we were unable to detect, specifically 
DoS attacks, simply are not visible to our sensor.  As one would predict, 
DERBI did better in detecting User-to-Root attacks than Remote-to-Local 
(login) attacks.  The former often leaves more evidence in the file system. 

 

 

1999 IDE 
In 1999, the simulated site was more complex with further attack classes.  A 
major emphasis was the need to identify novel attacks.  Seven research 

Explaining and Recovery from Computer Break-ins  16 



 

groups participated in the evaluation, submitting results from a total of 17 
differently configured systems. 

In 1998 the evaluators felt that taking full dumps of the system after each 
day’s simulation was too labor-intensive.  We provided Lincoln Labs with a 
routine to capture much of the file information we needed for DERBI to 
analyze the system.   

Unfortunately, we failed to specify the need to capture crontab files.  During 
evaluation, we were unable to detect the existence of these jobs (during 
which a legitimate user process may access the file system but without a 
corresponding login). 

Again, DERBI was only measured against attacks on Solaris machines.  We 
had ported the feet portion of DERBI to Linux during the summer but forgot 
to supply to Lincoln Labs a file-system information collection program for 
Linux.  As a result, no data for DERBI was generated on Linux systems during 
the simulation. 

Another testing artifact complicated the evaluation of DERBI.  After Lincoln 
Labs ran a day’s simulation, they might not run the next day’s simulation 
right away.  Instead, they sometimes left the system running while they 
performed various tasks on it. For instance, if after they had run Monday’s 
simulation, they then did tests or whatever on the system, the system’s clock 
would continue to run into Tuesday.  In some cases, the interval between 
simulations might be two or more days.  Finally, when they began Tuesday’s 
simulation, they would turn the clock back to Tuesday morning. 

This works well for the real-time audit data, but the file system data has been 
corrupted.  When the file system data is collected on Tuesday night, there 
would be information that files were created or accessed during that 
“Tuesday” that happened between the simulation, as well as the intended file 
system changes that happened during the simulated Tuesday.  In some 
cases, the data on Tuesday night indicated changes to the file system with 
Wednesday’s date!  We were able to ignore the Wednesday dates, but there 
was no easy way to distinguish file system changes that happened between 
simulations versus those that happened during a simulation. 

Still, DERBI again did well despite the fact that the intrusions were now 
more complex.  61% of all attacks were detected.  62% of the novel attacks 
were detected.  The number of false alarms was up (2.5/day) due primarily to 
the problem of duplicated times.  Again, DERBI was among the top 
performing systems.  The pattern held of DERBI performing better on the 
User-to-Root that Remote-to-Local.  In a new class of attacks (DATA) where 
the IDS was to detect unauthorized access to files, DERBI detected more than 
80% of the attacks. 

These numbers for the evaluations should be considered as only rough 
indications of relative performance.  The increased complexity of the 
intrusions in the test from 1998 to 1999 significantly affected these 
numbers.  There is no evidence that these numbers would be appropriate for 
a fielded system. 

Explaining and Recovery from Computer Break-ins  17 



 

Benefits of Evaluation 
These evaluations were extremely useful to the development of DERBI.  The 
primary benefit was that the evaluations provided sets of intrusion data that 
we could not easily have acquired or produced.  Rather than having each 
research group generate pseudo-realistic data for testing, the effort was 
concentrated in one group who then provided it to the participants. 

Secondly, the joint evaluation provides each research group and the funding 
agencies a better understanding of how each technology compares.  By 
forcing the research community into a joint test, we have some basis for this 
comparison.  However since the various systems address different aspects of 
intrusion detection, there are few completely comparable systems.   

Finally, the evaluations focussed the development effort towards near-real-
world situations.  This is both a benefit and a restriction.  In order to 
perform well on these tests, considerable effort had to be expended on the 
tests themselves.  This took away from research efforts in other directions.  
For DERBI, this meant less time was spent in developing the system as a tool 
for inexpert SysAdmins by researching better explanation and recovery 
capabilities.  Instead we improved the detection portion of DERBI. 

Porting to New Environments 

Linux Port 
DERBI was developed to run under Solaris. During the summer and fall of 
1999, portions (the “feet”) of DERBI were ported to run under Linux. The port 
did not go quite as smoothly as one would hope. 

When we initially began our Linux port, we aimed for the then current 
version of Redhat Linux which was 6.0.  When we realized that the IDE 
systems were only running Redhat 5.0, we had to reconfigure our Linux 
system for that version.  Unfortunately this was complicated by the fact that 
our hardware was too new for all the drivers to exist in Redhat 5. 

We also found there were differences in some of the details of logging 
between the two systems.  Redhat 5 didn’t have all the information available 
in Redhat 6. 

Conversion to Linux required going over all of the system.  Assumptions 
built into the software needed to be reviewed and revalidated.  Log files 
needed to be examined to determine how messages were recorded slightly 
differently.  Obviously some of the obscure data we were able to use had no 
parallel in Linux.  We weren’t as intimately familiar with Linux to find Linux-
specific obscure relationships. 

When we had most of the pieces running, we realized that we were not going 
to be able to participate in the IDE on the Linux systems.  In response to 
Lincoln Labs’ request, Doug Moran had provided them with a tool to extract 
the information from the file system that DERBI needed.  But this was done 
before the Linux conversion began.  Dr. Moran had left the project by the 
time we began the conversion and we didn’t realize until the data came out 
that the only data available for DERBI would be on the Solaris systems. 

Explaining and Recovery from Computer Break-ins  18 



 

As a result, the Linux port was never tested by the evaluation mechanism. 

Porting the system gave us a healthy respect for the need for the abilities of 
an expert in the target OS.  For this port, we had one of the developers of 
FreeBSD, but even he was unable to quickly port the system.  (But I expect 
that FreeBSD development will be more conscious of the need for thorough 
logging!) 

Complex Sites 
Another area that we had wanted to pursue was to explore the difficulties in 
working on a complex site.  In such a site, a single file can be accessed or 
modified from any of a set of computers. A file may be known by different 
names on different machines.  The clocks may be different on the different 
machines (so whose time is used to set the access time on files?).  Each 
machine may have different sets of users, or the same user may have 
differing uids (while that might not be desirable, a cracker may cause that 
situation).   Exploits could be spread over different systems in novel ways. 

The issues here are not just for a DERBI style system.  Other IDSs will need to 
face some or all of these problems. 

Summary 

Weaknesses 
DERBI’s primary feature is both a strength and a weakness is that it isn’t an 
alarm system, watching everything happening on the system, and ready to 
sound an alarm the instant something unusual happens.  As a result, it can’t 
do anything about intrusions until the SysAdmin notices something unusual. 
 
DERBI’s only source of information is the file system.  As a result, it is 
dependent upon whatever the operating system chooses to record in log 
files or elsewhere.  On an operating system without access dates, DERBI 
would be in many ways partially blinded. 
 
The fact that an intruder has access to the file system means that he has the 
opportunity to obliterate or confound DERBI by manipulating log files and 
other information.   For instance, if an intruder with root access causes all 
the files in the system to be accessed, DERBI can’t tell too much about what 
he did. 
 
DERBI is also vulnerable to other users stepping on the data in the file 
system.  If the interval between the intrusion and the application of DERBI is 
too long, some of the information may be lost.  A second intruder may also 
confuse the situation and possibly completely hiding the fact of a prior 
intruder. 
 
We’ve used Sun’s ufsdump program to record file system information.   This 
program is unusual in that it can record the file system information without 
significantly modifying it.  Other backup programs are different and will 
modify either the creation time or access time of files they back up. 
 

Explaining and Recovery from Computer Break-ins  19 



 

As with all IDSs, if a cracker knows all the triggers you use to detect him, he 
can be more effective at avoiding them.  In response to a query as to 
whether we felt someone could get into and out of a system without being 
detectable, we felt the answer was “No”.  However, one could hide much of 
what one did. 
 

Strengths 
Again, DERBI’s primary feature is both a strength and a weakness.  Rather 
than burdening down a system with instrumentation, DERBI can check on the 
system when it is needed or on a regular system at off-hours. 
 
Evaluations indicated that DERBI did a good job at detecting intrusions.  We 
feel that in the real world, it would do even better. 
 
DERBI uses a variety of redundant information to confirm that the system is 
consistent.  Inconsistencies by themselves are suspicious.   Much of this 
redundant information is relatively hidden so crackers are less likely to make 
sure all is consistent. 
 
DERBI is designed to be usable by a SysAdmin that is not a computer-security 
expert who is under pressure to investigate, resolve, and recover his system 
in the least amount of time. 
 
DERBI can be run from any of several configurations depending upon the 
resources available.  These range from the most convenient (single 
computer) to the most reliable (examining a file system rebuilt from a 
backup of the suspect system).  The operator can choose what best fits his 
needs. 

Future 
One of the issues that comes up with DERBI and many of the other IDSs is 
the issue of privacy.  We ran into this issue during the 1999 IDE.  We 
considered looking at browser cache’s in much the same way as one would 
look at telnet logs.  If a user accesses a cracker site via the web, his account 
begins to look suspicious.  It doesn’t take much imagination to expand the 
set of red-flag sites until you get to the point at which individuals may have 
claims of privacy.   

One of the most pressing questions is whether DERBI and its technology are 
relevant.  Obviously the problem of intrusions won’t go away.  It is clear that 
a system that detects intrusions in real time is a preferable tool at a site that 
can afford to have that.  The question is then whether these tools can be 
made easy enough to install and maintain on each and every computer.2  If 
not, then DERBI has a utility.   Even if so, DERBI’s technology can be used to 
help investigate intrusions that avoid detection by real-time IDS. 

                                               
2 It is our belief that network sniffing tools will be totally ineffective when most 
network traffic is encrypted.  As a result, host-based IDS is seemingly the only choice. 

Explaining and Recovery from Computer Break-ins  20 



 

Dr. Doug Moran, the original designer of DERBI, is currently part of a start-up 
working on the problems of computer security.  It seems likely that some of 
DERBI’s technology may be involved in future commercial products. 

A DERBI-technology system could be developed for other operating systems, 
most notably Windows NT.   The system would need to be rewritten basically 
from scratch.  There are a number of issues that need to be considered, 
including logging and the difference between primarily multi-user vs. 
primarily single-user systems. 

Commercialization of a DERBI-technology system would require a plan to 
solve the field-update problem.  The system would need to be able to be 
updated in much the same way that current virus checking programs are 
updated. 

Summary 
DERBI began as an effort to build a system that performed like a computer 
security expert to assist a SysAdmin in understanding intrusions.  The 
prototype system performed quite well on both the 1998 and 1999 Intrusion 
Detection Evaluations.   The research project DERBI has proved its primary 
objectives – an after-the-fact IDS can effectively detect and explain computer 
break-ins. 

 

Explaining and Recovery from Computer Break-ins  21 

Mabry Tyson
Should I name the company?


	Introduction
	DERBI – A Different Kind of Intrusion Detection S
	Comparison to Virus Detection Software

	DERBI Objectives
	Assistance after a Break-In
	No Prior Set-up Required
	Explanation and Guidance for Recovery
	How Effective is After-the-Fact Intrusion Detection?

	DERBI Usage
	Direct Installation on Suspect System
	Inspection of Suspect System from a Trusted System
	Analysis by a Portable DERBI Machine
	Inspection of System Snapshot

	DERBI Structure
	Head-Body-Feet
	Head
	Feet

	Data Collection
	Obvious Data
	Subtle Data
	Obscure Data

	Evaluation
	Lincoln Labs IDE
	1998 IDE
	1999 IDE
	Benefits of Evaluation

	Porting to New Environments
	Linux Port
	Complex Sites

	Summary
	Weaknesses
	Strengths
	Future
	Summary


